MicroRNA Therapeutics in Triple Negative Breast Cancer
Main Article Content
Abstract
Breast cancer is a complex disease and one of the main causes of cancer-related mortality in women worldwide. In case of approximately 15% of all breast cancers, three markers i.e. estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptors-2 (HER2) are not expressed, and is commonly termed as triple-negative breast cancer (TNBC). Particularly, TNBC is associated with a higher percentage of breast cancer related mortality, which is often aggressive and most frequently found with a BRCA1 mutation or increased basal marker expression. However, due to the limitations of chemotherapy and radiation based treatment; the current challenge is to establish a new strategy of diagnosis and treatment of TNBC. The deregulation of a number of microRNAs (miRNAs) in breast cancer has been widely reported. Therefore, this review is directed towards enhancing our understanding of the involvement of various miRNAs in the pathology of TNBC, their upregulations and downregulations and the effects on various factors. From recent studies a number of miRNAs are found to be related with TNBC, which have great potential to be used as a biomarker to determine the disease prognosis and predict the fate of disease. Again miRNA can be targeted to be applied as a therapeutic to provide a great benefit to the patients of TNBC by finding a new, safe, and effective treatment strategy.
Article Details
Copyright (c) 2017 Mitra S.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Akhtar M, Dasgupta S, Rangwala M. Triple negative breast cancer: an Indian perspective. Breast Cancer (Dove Med Press). 2015; 7: 239-243. Ref.: https://goo.gl/qkjztY
Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011; 16: 1-11. Ref.: https://goo.gl/rCRpbF
Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJ, et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res. 2015; 17: 134. Ref.: https://goo.gl/5VDvxe
Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007; 13: 4429-4434. Ref.: https://goo.gl/ixFkXG
Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, et al. Clinicopathologic features, patterns of recurrence, and survival among women with triple‐negative breast cancer in the National Comprehensive Cancer Network. Cancer. 2012; 118: 5463-5472. Ref.: https://goo.gl/C2W1Un
Sachdev JC, Ahmed S, Mirza MM, Farooq A, Kronish L, et al. Does race affect outcomes in triple negative breast cancer? Breast cancer(Auckl). 2010; 4: 23-33. Ref.: https://goo.gl/DPyd2R
Wei X-Q, Li X, Xin X-J, Tong Z-S, Zhang S. Clinical features and survival analysis of very young (age<35) breast cancer patients. Asian Pacific Journal of Cancer Prevention. 2013; 1: 5949-5952. Ref.: https://goo.gl/MxQDZF
Thomas K, Shiao J, Rao R, Minhajuddin A, Spangler A, et al. Constructing a Clinicopathologic Prognostic Model for Triple-Negative Breast Cancer. American Journal of Hematology/Oncology®, 2017; 13: 11-21. Ref.: https://goo.gl/da2Ue8
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer res. 2005; 65: 7065-7070. Ref.: https://goo.gl/AWPv6j
Schwarzenbacher D, Balic M, Pichler M. The role of microRNAs in breast cancer stem cells. Int J Mol Sci. 2013; 14: 14712-14723. Ref.: https://goo.gl/2ZLHWG
Serpico D, Molino L Di, Cosimo S. microRNAs in breast cancer development and treatment. Cancer Treat Rev. 2014; 40: 595-604. Ref.: https://goo.gl/KNeCPB
Stover DG, Winer EP. Tailoring adjuvant chemotherapy regimens for patients with triple negative breast cancer. Breast. 2015; 24: 132-135. Ref.: https://goo.gl/RWURDL
Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern Pathology. 2011; 24: 157-167. Ref.: https://goo.gl/YYuZYo
Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol. 2006; 59: 729-735. Ref.: https://goo.gl/ox1RqW
Irvin WJ, Carey LA. What is triple-negative breast cancer? Eur J Cancer. 2008; 44: 2799-2805. Ref.: https://goo.gl/m7Tysk
Rakha EA, El‐Sayed ME, Green AR, Lee AH, Robertson JF, et al. Prognostic markers in triple‐negative breast cancer. Cancer. 2007a; 109: 25-32. Ref.: https://goo.gl/G3oWcS
Rakha EA, Tan DS, Foulkes WD, Ellis IO, Tutt A, at el. Are triple-negative tumours and basal-like breast cancer synonymous? Breast cancer research. 2007b; 9: 404. Ref.: https://goo.gl/VKeMR6
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003; 100: 8418-8423. Ref.: https://goo.gl/XGzMaq
Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer. 2007; 7: 937-948. Ref.: https://goo.gl/rqLiiJ
Fadare O, Tavassoli FA. Clinical and pathologic aspects of basal-like breast cancers. Nat Clin Pract Oncol. 2008; 5: 149-159. Ref.: https://goo.gl/rbTDYf
Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, et al. How basal are triple‐negative breast cancers? Int J Cancer. 2008; 123: 236-240. Ref.: https://goo.gl/zLpZxL
Calza S, Hall P, Auer G, Bjöhle J, Klaar S, et al. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res. 2006; 8: R34. Ref.: https://goo.gl/zAJs3q
Hashmi AA, Edhi MM, Naqvi H, Faridi N, Khurshid A, et al. Clinicopathologic features of triple negative breast cancers: an experience from Pakistan. Diagn Pathol. 2014; 9: 43. Ref.: https://goo.gl/CbeVRJ
Cheng H, Qin Y, Fan H, Su P, Zhang X, et al. Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn Pathol. 2013; 8: 129. Ref.: https://goo.gl/YcLpjk
Klingen TA, Chen Y, Suhrke P, Stefansson IM, Gundersen MD, et al. Expression of thyroid transcription factor-1 is associated with a basal-like phenotype in breast carcinomas. Diagn Pathol. 2013; 8: 80. Ref.: https://goo.gl/BCFoZv
Liu L, Liu Z, Qu S, Zheng Z, Liu, et al. Small breast epithelial mucin tumor tissue expression is associated with increased risk of recurrence and death in triple-negative breast cancer patients. Diagn Pathol. 2013b; 8: 71. Ref.: https://goo.gl/Zs3pTt
Nass N, Dittmer A, Hellwig V, Lange T, Beyer JM, et al. Expression of transmembrane protein 26 (TMEM26) in breast cancer and its association with drug response. Oncotarget. 2016; 7: 38408-38426. Ref.: https://goo.gl/QVgCfH
Yamagishi Si, Matsui T, Fukami K. Role of receptor for advanced glycation end products (RAGE) and its ligands in cancer risk. Rejuvenation Res. 2015; 18: 48-56. Ref.: https://goo.gl/UkVvuy
Radia A-M, Yaser A-M, Ma X, Zhang J, Yang C, et al. Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci. 2013; 14: 7959-7978. Ref.: https://goo.gl/CmgGy4
Svoboda M, Sana J, Redova M, Navratil J, Palacova M, et al. MiR-34b is associated with clinical outcome in triple-negative breast cancer patients. Diagn Pathol. 2012; 7: 31. Ref.: https://goo.gl/YZJ4Rb
Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite S, et al. Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol. 2012; 7: 27. Ref.: https://goo.gl/Cv32X7
Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006; 19: 264-271. Ref.: https://goo.gl/x6U4g8
Fulford L, Easton D, Reis‐Filho J, Sofronis A, Gillett C, et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology. 2006; 49: 22-34. Ref.: https://goo.gl/wNDjAk
Reis‐Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, et al. Metaplastic breast carcinomas are basal‐like tumours. Histopathology. 2006; 49: 10-21. Ref.: https://goo.gl/7yuofu
Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007; 8: 235-244. Ref.: https://goo.gl/bTe5m9
Carter M, Hornick JL, Lester S, Fletcher CD. Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 2006; 30: 300-309. Ref.: https://goo.gl/UYu7xG
Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. IV. Squamous cell carcinoma of ductal origin. Cancer. 1990a; 65: 272-276. Ref.: https://goo.gl/ZhMcrA
Rosen PP, Ernsberger D. Low-Grade Adenosquamous Carcinoma: A Variant of Metaplastic Mammary Carcinoma. Am J Surg Pathol. 1987; 11: 351-358. Ref.: https://goo.gl/jbrMzF
Hanna W, Kahn HJ. Ultrastructural and immunohistochemical characteristics of mucoepidermoid carcinoma of the breast. Hum Pathol. 1985; 16: 941-946. Ref.: https://goo.gl/z1AY4D
Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast: V. Metaplastic carcinoma with osteoclastic giant cells. Hum Pathol. 1990b; 21: 1142-1150. Ref.: https://goo.gl/2PU5oL
Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001; 25: 1009-1016. Ref.: https://goo.gl/JVCMpx
Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010; 10: 297-308. Ref.: https://goo.gl/21xJAU
Le X-F, Merchant O, Bast RC, Calin, GA. The roles of microRNAs in the cancer invasion-metastasis cascade. Cancer Microenviron. 2010; 3:137-147. Ref.: https://goo.gl/S73wzr
Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008; 10: 203. Ref.: https://goo.gl/H727oi
Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007; 8: 214.Ref.: https://goo.gl/J2kvV8
Van Schooneveld E,Wildiers H, Vergote I, Vermeulen PB, Dirix LY, et al. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015; 17: 21. Ref.: https://goo.gl/eRZ3Dz
Lehmann BD, Bauer JA, Chen X. Sanders ME, Chakravarthy AB, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011; 121: 2750-2767. Ref.: https://goo.gl/JdPQuW
Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, et al. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet. 2017; 62: 15-24. Ref.: https://goo.gl/2beH8d
Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, et al. Down‐regulation of BRCA1 expression by miR‐146a and miR‐146b‐5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011b; 3: 279-290. Ref.: https://goo.gl/uyDCs7
Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011a; 3: 279-290. Ref.: https://goo.gl/b6LLyy
Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008; 29: 1963-1966. Ref.: https://goo.gl/vsxoFy
Crippa E, Lusa L, De Cecco L, Marchesi E, Calin GA, et al. miR-342 regulates BRCA1 expression through modulation of ID4 in breast cancer. PloS one. 2014; 9. Ref.: https://goo.gl/hGwK4D
Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011; 41: 210-220. Ref.: https://goo.gl/hcRb6n
Tanic M, Yanowski K, Gómez‐López G, Rodriguez‐Pinilla MS, Marquez‐Rodas I, et al. MicroRNA expression signatures for the prediction of BRCA1/2 mutation‐associated hereditary breast cancer in paraffin‐embedded formalin‐fixed breast tumors. Int J Cancer. 2015; 136: 593-602. Ref.: https://goo.gl/grGd5T
Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007; 316: 608-611. Ref.: https://goo.gl/GF482e
Zonari E, Pucci F, Saini M, Mazzieri R, Politi LS, et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective anti-tumor responses. Blood. 2013. Ref.: https://goo.gl/hGCSBT
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008; 10: 593-601. Ref.: https://goo.gl/zVDmYo
Gebeshuber CA, Zatloukal K, Martinez J. miR‐29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009; 10: 400-405. Ref.: https://goo.gl/441YmF
Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep. 2014; 31: 1509-1516. Ref.: https://goo.gl/fnLsKJ
Gaur AB, Holbeck SL, Colburn NH, Israel MA. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 2011; 13: 580-590. Ref.: https://goo.gl/byJacU
Wang Q, Liu S, Tang Y, Liu Q, Yao Y. MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PloS one. 2014; 9. Ref.: https://goo.gl/aJ5xsF
Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, et al. Gap junction-mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011; 71: 1550-1560. Ref.: https://goo.gl/pvkf4M
Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014; 5: 9650-9663. Ref.: https://goo.gl/hTpniA
Chen J, Shin VY, Siu MT, Ho JC, Cheuk I, et al. miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC cancer. 2016; 16: 887. Ref.: https://goo.gl/JRTnbS
Abdellatif M. Differential expression of microRNAs in different disease states. Circ Res. 2012; 110: 638-650. Ref.: https://goo.gl/8DbLUY
Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015; 97: 104-121. Ref.: https://goo.gl/2KEucF
Kim NH, Kim HS, Li XY, Lee I, Choi HS, et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011; 195: 417-433. Ref.: https://goo.gl/16dmCU
Song SJ, Poliseno L, Song MS, Ala U, Webster K, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013; 154: 311-324. Ref.: https://goo.gl/mFpe5j
Graveel CR, Calderone HM, Westerhuis JJ, Winn ME, Sempere LF. Critical analysis of the potential for microRNA biomarkers in breast cancer management. Breast Cancer (Dove Med Press). 2015; 7: 59-79. Ref.: https://goo.gl/MeC4Ze
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007; 449: 682-688. Ref.: https://goo.gl/T28Wx1
Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, et al. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328,-519c and-520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol. 2011; 81: 783-792. Ref.: https://goo.gl/AJpbNX
Amschler K, Schön MP, Pletz N, Wallbrecht K, Erpenbeck L, et al. NF-κB inhibition through proteasome inhibition or ikkβ blockade increases the susceptibility of melanoma cells to cytostatic treatment through distinct pathways. Journal of Investigative Dermatology. 2010; 130: 1073-1086. Ref.: https://goo.gl/4LZLsx
Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014b; 5: 9650-9663. Ref.: https://goo.gl/rHgdDT
Gabriely G, Teplyuk NM, Krichevsky AM. Context effect: microRNA-10b in cancer cell proliferation, spread and death. Autophagy. 2011; 7: 1384-1386. Ref.: https://goo.gl/JeGrjH
Lee KH, Goan YG, Hsiao M, Lee CH, Jian SH, et al. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res. 2009; 315: 2529-2538. Ref.: https://goo.gl/pQ5E1y
Okoye JO, Okoye FO. miRNA and Target Oncogene Regulation in Triple Negative Breast Cancer: An Age, Ethnic and Environmental Related Neoplastic Event. JCTI. 2015; 2: 66-80. Ref.: https://goo.gl/LAue9x
Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA, et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell cycle. 2011; 10: 507-517. Ref.: https://goo.gl/epHQG9
Wang Y, Rathinam R, Walch A, Alahari SK. ST14 (suppression of tumorigenicity 14) gene is a target for miR-27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation. J Biol Chem. 2009; 284: 23094-23106. Ref.: https://goo.gl/d2hUNM
Wu Q, Wang C, Lu Z, Guo L, Ge Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim acta. 2012; 413: 1058-1065. Ref.: https://goo.gl/rZXH2c
Zavala V, Pérez-Moreno E, Tapia T, Camus M, Carvallo P. MiR-146a and miR-638 in BRCA1-deficient triple negative breast cancer tumors, as potential biomarkers for improved overall survival. Cancer Biomarkers. 2016; 16: 99-107. Ref.: https://goo.gl/Tm2PTf
Liu H, Wang Y, Li X, Zhang Y-j, Li J, et al. Expression and regulatory function of miRNA182 in triple-negative breast cancer cells through its targeting of profilin 1. Tumour Biol. 2013a; 34: 1713-1722. Ref.: https://goo.gl/hVysfE
Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2012; 21: 1236-1243. Ref.: https://goo.gl/5FGVmG
Ding L, Ni J, Yang F, Huang L, Deng H, et al. Promising therapeutic role of miR-27b in tumor. Tumour Biol. 2017; 39. Ref.: https://goo.gl/DhSVYM
Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, et al. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer. Cancer Res. 2013; 73: 2884-2896. Ref.: https://goo.gl/JHqgXT
Fkih M'hamed I, Privat M, Ponelle F, Penault-Llorca F, Kenani A. Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell Oncol (Dordr). 2015; 38: 433-442.Ref.: https://goo.gl/HxFqof
Fkih M'hamed I, Privat M, Trimeche M, Penault-Llorca F, Bignon YJ. et al. miR-10b, miR-26a, miR-146a And miR-153 Expression in Triple Negative Vs Non Triple Negative Breast Cancer: Potential Biomarkers. Pathol Oncol Res. 2017. Ref.: https://goo.gl/7y1JFS