Abstract

Research Article

Boron neutron capture therapy for the treatment of lung cancer and assessment of dose received by organs at risk

Sajad Keshavarz, Elnaz Emamzadeh, Dariush Sardari*, Sepideh Yazdani Darki and Marzieh Kabirian

Published: 16 September, 2022 | Volume 6 - Issue 1 | Pages: 027-031

Recent studies on boron neutron capture therapy (BNCT) have focused on investigating the appropriate neutron sources based on accelerators for neutron production, such as 7Li(p,n)7 Be. The therapeutic abilities of BNCT have been studied for the possible treatment of lung cancer using thermal and epithermal neutron beams. For neutron transport, the Monte Carlo N-particle transport code was used, and doses in the organs of different Oak Ridge National Laboratory phantoms were evaluated. The right lung was meshed with voxels to obtain depth-dose distributions using 1 eV, 10 eV, 100 eV, 1 keV, 5 keV, 8 keV and 10 keV energy sources. These results suggest that BNCT with an epithermal neutron beam can be used to treat lung cancer. By evaluating the biological dose rate and dose-depth distribution curves in healthy tissues and tumors by simulating a lung phantom, the quantities in the phantom were also evaluated. Our calculations show that with increasing boron concentration applied to the tumor, the dose is increased and the 100 eV energy source has the greatest effect on the tumor dose.

Read Full Article HTML DOI: 10.29328/journal.apcr.1001032 Cite this Article Read Full Article PDF

Keywords:

Lung cancer; BNCT; Total biological dose; Boron concentration; Organ at risk

References

  1. Wu S, Geng C, Tang X, Bortolussi S, Han Y, Shu D, Gong C, Zhang X, Tian F. Dosimetric impact of respiratory motion during boron neutron capture therapy for lung cancer. Radiation Physics and Chemistry. 2020;168, 108527. https://doi.org/10.1016/j.radphyschem.2019.108527
  2. Taheri A, Sardari D, Sayyareh R, Sadeghi M. Dose mapping simulation and BSA design for improving the dosimetry accuracy for research reactor BNCT. Journal of Neutron Research. 2019; 1-11. 3233/JNR-180082
  3. Pozzi EC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, Garabalino MA, Heber EM, Miller M, Itoiz ME, Aromando RF, Nigg DW, Quintana J, Trivillin VA, Schwint AE. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys. 2012 Aug;51(3):331-9. doi: 10.1007/s00411-012-0419-8. Epub 2012 Apr 28. PMID: 22544068.
  4. Ichikawa G, Tsuchida K, Kiyanagi Y, Ishikawa A, Hirata Y, Yoshihashi S, Watanabe K, Uritani A, Hamano T, Ogawara R, Igawa K, Suda M. Development of thermal neutron moderator for testing boron agents for Boron Neutron Capture Therapy (BNCT). Journal of Instrumentation. 2019; 14:06;T06010. 1088/1748-0221/14/06/T06010.
  5. Suzuki M. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol. 2020 Jan;25(1):43-50. doi: 10.1007/s10147-019-01480-4. Epub 2019 Jun 5. PMID: 31168726.
  6. Keshavarz S, Sardari D. Different distributions of gold nanoparticles on the tumor and calculation of dose enhancement factor by Monte Carlo simulation. Nuclear Energy and Technology. 2019; 5:361. 3897/nucet.5.39096.
  7. Kaur M, Singh P, Singh K, Gaharwar US, Meena R, Kumar M, Nakagawa F, Wu Sh, Suzuki M, Nakamura H, Kumar A. Boron nitride (10BN) a prospective material for treatment of cancer by boron neutron capture therapy (BNCT). Materials Letters. 2020;259: 126832. https://doi.org/10.1016/j.matlet.2019.126832.
  8. Karaoglu A, Arce P, Obradors D, Lagares JI, Unak P. Calculation by GAMOS/Geant4 simulation of cellular energy distributions from alpha and lithium-7 particles created by BNCT. Appl Radiat Isot. 2018 Feb;132:206-211. doi: 10.1016/j.apradiso.2017.11.021. Epub 2017 Nov 20. PMID: 29183761.
  9. Shaaban I, Albarhoum M. Design calculation of an epithermal neutronic beam for BNCT at the Syrian MNSR using the MCNP4C code. Progress in Nuclear energy. 2015;78: 297-302. https://doi.org/10.1016/j.pnucene.2014.10.005
  10. Trivillin VA, Serrano A, Garabalino MA, Colombo LL, Pozzi EC, Hughes AM, Curotto PM, Thorp SI, Farías RO, González SJ, Bortolussi S, Altieri S, Itoiz ME, Aromando RF, Nigg DW, Schwint AE. Translational boron neutron capture therapy (BNCT) studies for the treatment of tumors in lung. Int J Radiat Biol. 2019 May;95(5):646-654. doi: 10.1080/09553002.2019.1564080. Epub 2019 Feb 22. PMID: 30601686.
  11. Quah SC. Boron neutron capture therapy in the treatment of lung cancer.Journal of Xiangya Medicine. 2018; 3: 29. 21037/jxym.2018.06.02.
  12. Krstic D, Jovanovic Z, Markovic V, Nikezic D, Urosevic V. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy. Open Physics. 2014;12(10): 714–718. https://doi.org/10.2478/s11534-014-0507-2.
  13. Krstic D, Markovic VM, Jovanovic Z, Milenkovic B, Nikezic D, Atanackovic J. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy. Radiat Prot Dosimetry. 2014 Oct;161(1-4):269-73. doi: 10.1093/rpd/nct365. Epub 2014 Jan 16. PMID: 24435912.
  14. Moghaddasi L, Bezak E. Development of an integrated Monte Carlo model for glioblastoma multiforme treated with boron neutron capture therapy. Sci Rep. 2017 Aug 1;7(1):7069. doi: 10.1038/s41598-017-07302-9. PMID: 28765533; PMCID: PMC5539248.
  15. Bykov TA, Kasatov DA, Koshkarev AM, Makarov AN, Leonov VV, Porosev VV, Verkhovod GD. Evaluation of depth-dose profiles in a water phantom at the BNCT facility at BINP. Journal of Instrumentation. 2021; 16(10): P10016.
  16. Large MJ, Malaroda A, Petasecca M, Rosenfeld AB, Guatelli S. Modelling ICRP110 Adult Reference Voxel Phantoms for dosimetric applications: Development of a new Geant4 Advanced Example. In Journal of Physics: Conference Series IOP Publishing. 2020;1661(1): 012021. 1088/1742-6596/1662/1/012021.
  17. Darki SY, Keshavarz S. Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes. Nuclear Science and Techniques. 2020; 31(12):1-15. https://doi.org/10.1007/s41365-020-00827-1.
  18. Coderre JA, Morris GM. The radiation biology of boron neutron capture therapy. Radiat Res. 1999 Jan;151(1):1-18. PMID: 9973079.
  19. Kiger JL, Kiger WS, Patel H, Binns PJ, Riley KJ, Hopewell JW, Harling OK, Coderre JA. Effects of boron neutron capture irradiation on the normal lung of rats. Appl Radiat Isot. 2004 Nov;61(5):969-73. doi: 10.1016/j.apradiso.2004.05.021. PMID: 15308177.
  20. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991;21(1-3):1-201. PMID: 2053748.
  21. White DR, Griffith RV, Wilson IJ. Report 46. Journal of the International Commission on Radiation Units and Measurements. 1992;1: NP-NP. https://doi.org/10.1093/jicru/os24.1.Report46.
  22. Kabirian M, Sardari D, Babapour F. Determination of proper neutron beam energy spectrum for penetration depth in liver BNCT. International Academic Journal of Science and Engineering. 2016; 3:106-114.
  23. Zabihzadeh M, Rahimli F, Behrooz MA, Danyaei A, Shabazian H. Evaluation of Dose distribution in lung tumor radiotherapy with boron neutron capture therapy. Iranian Journal of Medical Physics. 2021; 18: 63-69.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Figure 1

Figure 6

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?