Abstract

Review Article

SARS-CoV-2 related HIV, HBV, RSV, VZV, Enteric viruses, Influenza, DENV, S. aureus and TB co-infections

Ammara Azhar, Umar Saeed*, Zahra Zahid Piracha, Areesha Amjad, Aftab Ahmed, Syeda Itrat Batool, Maimoona Jabeen, Areej Fatima, Fakhia Noreen, Rehan Uppal and Rizwan Uppal

Published: 08 November, 2021 | Volume 5 - Issue 1 | Pages: 026-033

SARS-CoV-2 a virulent disease that established the entire wide world due to its severity. Its 1st case was rumored in Wuhan, China within the year 2019 and it had been the beginning of this pandemic. This virus killed virtually a complete of 4,465,683 folks round the globe until date. Despite the fact that viral co-infections have the ability to alter the host’s illness pattern, few research have looked at the disease outcomes in patients who are infected with HIV and hCoVs. Despite the fact that HIV-positive people can be infected with hCoVs, researchers are now revealing that their chances of acquiring serious CoV-related disorders are typically similar to what is seen in the general population. The relation between SARS-CoV-2 and HBV was summarized rather HBV effects the severity of COVID patient or not. SARS-CoV-2 could be a severe acute metabolic process syndrome. Scientists found ways in which to treat this virus, some were useful and alternative weren’t that a lot of effective. Immunizing agent was one among the most important considerations for the entire world. This virus conjointly fashioned an entry for alternative co-infections too. SARS-CoV-2 and influenza virus, both causes respiratory diseases which confer as an extensive array of illness from asymptomatic or benign to critical disease and death. Also the mode of transmission and symptoms of influenza virus and SARS-CoV-2 are same. Viral and bacterial rate is higher in SARS-CoV-2 negative patient but are comparable. Serologies facts confirmed that patients with effective results for dengue virus (DENV) NS1 antigen and anti-dengue IgM were also attentive to COVID-19 speedy antibody tests, suggesting dengue COVID-19 co-infection. Mixed infection of dengue and COVID-19 needs unique interest from all dengue-common nations in Asia, especially the ones with limited resources. To our knowledge, this is the primary showed case of co-infection of dengue and COVID-19 in Indonesia. During patient’s TB course, COVID-19 can occur at any time with worse consequences for the patients who are affected by active pulmonary disease.

Read Full Article HTML DOI: 10.29328/journal.apcr.1001025 Cite this Article Read Full Article PDF

References

  1. Vizcarra P, Pérez-Elías MJ, Quereda C, Moreno A, Vivancos MJ, et al. Description of COVID-19 in HIV-infected individuals: a single-centre, prospective cohort. Lancet HIV. 2020; 7: 554-564. PubMed: https://pubmed.ncbi.nlm.nih.gov/32473657/
  2. Zhang JC, Zhang HJ, Li Y, Jing D, Liu Q, et al. Changes in levels of T cell subpopulations to monitor the response to antiretroviral therapy among HIV-1-infected patients during two years of HIV-1 replication suppression. Scand J Infect Dis. 2013; 45: 368-377. PubMed: https://pubmed.ncbi.nlm.nih.gov/23186319/
  3. Chen G, Wu D, Guo W, Cao Y, Huang D, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130: 2620-2629. PubMed: https://pubmed.ncbi.nlm.nih.gov/32217835/
  4. Kanwugu ON, Adadi P. HIV/SARS-CoV-2 co-infection: a global perspective. J Med Virol. 2020; 93: 726-732. PubMed: https://pubmed.ncbi.nlm.nih.gov/32692406/
  5. Guo W, Ming F, Feng Y, Zhang Q, Mo P, et al. Patterns of HIV and SARS-CoV-2 co-infection in Wuhan, China. J Int AIDS Soc. 2020; 23:25568. PubMed: https://pubmed.ncbi.nlm.nih.gov/32697865/
  6. Jiang H, Zhou Y, Tang W. Maintaining HIV care during the COVID-19 pandemic. The Lancet HIV. 2020; 7: e308-e309. PubMed: https://pubmed.ncbi.nlm.nih.gov/32272084/
  7. Guo W, Ming F, Yu D. A survey for COVID-19 among HIV/AIDS patients in two Districts of Wuhan, China, 2020.
  8. Bai Y, Yao L, Wei T, Tian F, Jin DY, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020; 323: 1406-1407. PubMed: https://pubmed.ncbi.nlm.nih.gov/32083643/
  9. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020; 221: 1762-1769. PubMed: https://pubmed.ncbi.nlm.nih.gov/32227123/
  10. Zhu F, Cao Y, Xu S, Zhou M. Reply to Comments on 'Co-infection of SARS-CoV-2 and HIV in a patient in Wuhan city, China'. J Med Virol. 2020; 92: 1417-1418. PubMed: https://pubmed.ncbi.nlm.nih.gov/32266995/
  11. Zhu F, Cao Y, Xu S, Zhou M. Co-infection of SARS-CoV-2 and HIV in a patient in Wuhan city, China. J Med Virol. 2020; 92: 529-530. PubMed: https://pubmed.ncbi.nlm.nih.gov/32160316/
  12. Jiehao C, Jin X, Daojiong L, Zhi Y, Lei X, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis. 2020; 71: 1547-1551. PubMed: https://pubmed.ncbi.nlm.nih.gov/32112072/
  13. Yan S, Song X, Lin F. Clinical characteristics of coronavirus disease 2019 in Hainan, China. medRxiv. 2020.
  14. Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020; 111: 102452. PubMed: https://pubmed.ncbi.nlm.nih.gov/32291137/
  15. Zhao J, Liao X, Wang H, Wei L, Xing M, et al. Early virus clearance and delayed antibody response in a case of COVID-19 with a history of co-infection with HIV-1 and HCV. Clin Infect Dis. 2020; 71: 2233-2235. PubMed: https://pubmed.ncbi.nlm.nih.gov/32270178/
  16. Qin C, Zhou L, Hu Z, Zhang S, Yang S, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71: 762-768. PubMed: https://pubmed.ncbi.nlm.nih.gov/32161940/
  17. Suwanwongse K, Shabarek N. Clinical features and outcome of HIV/SARS-CoV-2 co-infected patients in the Bronx, New York City. J Med Virol. 2020; 92: 2387-2389. PubMed: https://pubmed.ncbi.nlm.nih.gov/32462663/
  18. Maggiolo F, Zoboli F, Arosio M, Valenti D, Guarneri D, et al. SARS-CoV-2 infection in persons living with HIV: a single center prospective cohort. J Med Virol. 2020; 93: 1145-149. PubMed: https://pubmed.ncbi.nlm.nih.gov/32706409/
  19. Park SY, Lee JS, Son JS, Ko JH, Peck KR, et al. Post-exposure prophylaxis for Middle East respiratory syndrome in healthcare workers. J Hosp Infect. 2019; 101: 42-46.PubMed: https://pubmed.ncbi.nlm.nih.gov/30240813/
  20. Joob B, Wiwanitkit V. SARS-CoV-2 and HIV. J Med Virol. 2020; 92: 1415. PubMed: https://pubmed.ncbi.nlm.nih.gov/32220066/
  21. Xia Y, Protzer U. Control of hepatitis B virus by cytokines. Viruses. 2017; 9: 18. PubMed: https://pubmed.ncbi.nlm.nih.gov/28117695/
  22. World Health Organization (WHO), 2021.
  23. Wang M, Wu Q, Xu W, et al. Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. medRxiv. 2020.
  24. Chen X, Liao B, Cheng L, et al. The microbial co-infection in COVID-19. Appl Microbiol Biotechnol. 2020; 104: 7777-7785.
  25. Li, Y, Xia, L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. 2020; 214:1280-1286. PubMed: https://pubmed.ncbi.nlm.nih.gov/32130038/
  26. Chen L, Huang S, Yang J, Cheng X, Shang Z, et al. Clinical characteristics in patients with SARS-CoV-2/HBV co-infection. J Viral Hepatitis. 2020; 27: 1504–1507. PubMed: https://pubmed.ncbi.nlm.nih.gov/32668494/
  27. Chen X, Jiang Q, Ma Z, Ling J, Hu W, et al. Clinical Characteristics of Hospitalized Patients with SARS-CoV-2 and Hepatitis B Virus Co-infection. Virologica Sinica. 2020; 35: 842–845. PubMed: https://pubmed.ncbi.nlm.nih.gov/32839868/
  28. Li Y, Li C, Wang J, Zhu C, Zhu L, et al. A case series of COVID-19 patients with chronic hepatitis B virus infection. J Med Virol. 2020; 92: 2785–2791. PubMed: https://pubmed.ncbi.nlm.nih.gov/32558945/
  29. Jiaye L, Wang T, Cai Q, Sun L, Huang D, et al. Longitudinal changes of liver function and hepatitis B reactivation in COVID-19 patients with pre-existing chronic hepatitis B virus infection. Hepatol Res. 2020; 50: 1211–1221. PubMed: https://pubmed.ncbi.nlm.nih.gov/32761993/
  30. Jue L, Zhang S, Wang Q, Shen H, Zhang M, et al. Seroepidemiology of hepatitis B virus infection in 2 million men aged 21–49 years in rural China: a population-based, cross-sectional study. Lancet Infect Dis. 2016; 16: 80–86. PubMed: https://pubmed.ncbi.nlm.nih.gov/26268687/
  31. Loomba R, Liang TJ. Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. 2018; 152: 1297–1309. PubMed: https://pubmed.ncbi.nlm.nih.gov/28219691/
  32. Rodríguez-Tajes S, Miralpeix A, Costa J, López-Suñé E, Laguno M, et al. Low risk of hepatitis B reactivation in patients with severe COVID-19 who receive immunosuppressive therapy. J Viral Hepatitis. 2021; 28: 89–94. PubMed: https://pubmed.ncbi.nlm.nih.gov/32969557/
  33. Shi Y, Zheng M. Hepatitis B virus persistence and reactivation. The BMJ. 2020; 370. PubMed: https://pubmed.ncbi.nlm.nih.gov/32873599/
  34. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. 2020.
  35. Sonneveld MJ, Murad SD, van der Eijk AA, de Man RA. Fulminant Liver Failure due to Hepatitis B Reactivation During Treatment With Tocilizumab. ACG Case Rep J. 2019; 6: e00243. PubMed: https://pubmed.ncbi.nlm.nih.gov/32042838/
  36. Soriano CV. No Title No Title No Title. GEPCOMM Diagnostic Essay, 2021.
  37. Wong GLH, Wong VWS, Yuen BWY, Tse YK, Yip TCF, et al. Risk of hepatitis B surface antigen seroreversion after corticosteroid treatment in patients with previous hepatitis B virus exposure. J Hepatol. 2020; 72: 57-66. PubMed: https://pubmed.ncbi.nlm.nih.gov/31499132/
  38. Xiang TD, Zheng X. Interaction between hepatitis B virus and SARS-CoV-2 infections. World J Gastroenterol. 2021; 27: 782–793. PubMed: https://pubmed.ncbi.nlm.nih.gov/33727770/
  39. Yuen MF, Chen DS, Dusheiko GM, Janssen HLA, Lau DTY, et al. Hepatitis B virus infection. Nat Rev Dis Primers. 2018; 4: 18035.
  40. https://doi.org/10.1016/S0140-6736(99)80040-3
  41. https://www.certest.es/products/sars-cov-2-flu-a-flu-b-rsv/
  42. Shi T, McAllister DA, O’Brien KL, Simoes EAF, Madhi SA, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 2017; 390: 946-958. PubMed: https://pubmed.ncbi.nlm.nih.gov/28689664/
  43. Oray-Schrom P, Phoenix C, St Martin D, Amoateng-Adjepong Y. Sepsis workup in febrile infants 0-90 days of age with respiratory syncytial virus infection. Pediatr Emerg Care. 2003; 19: 314-319. PubMed: https://pubmed.ncbi.nlm.nih.gov/14578830/
  44. Zhang X, Chen Z, Gu W, Ji W, Wang Y, et al. Viral and bacterial co-infection in hospitalized children with refractory Mycoplasma pneumoniae pneumonia. Epidemiol Infect. 2018; 146: 1384-1388. PubMed: https://pubmed.ncbi.nlm.nih.gov/29970200/
  45. Hageman JR. The coronavirus disease 2019 (COVID-19). Pediatr Ann. 2020; 49: e99-e100. PubMed: https://pubmed.ncbi.nlm.nih.gov/32155273/
  46. Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. 2020; 214: 1280-1286. PubMed: https://pubmed.ncbi.nlm.nih.gov/32130038/
  47. Sawyer MH, Chamberlin CJ, Wu YN, Aintablian N, Wallace MR. Detection of varicella -zoster virus DNA in air samples from hospital rooms. J Infect Dis. 1994; 169: 91–94.
  48. Gnann JW, Jr, Whitley RJ. Clinical practice. Herpes zoster. N Engl J Med. 2002; 347: 340–346. PubMed: https://pubmed.ncbi.nlm.nih.gov/23863052/
  49. Gilden DH, Kleinschmidt-DeMasters BK, LaGuardia JJ, Mahalingam R, Cohrs RJ. Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med. 2000; 342: 635–645. PubMed: https://pubmed.ncbi.nlm.nih.gov/10699164/
  50. Marin M, Guris D, Chaves SS, Schmid S, Seward JF. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2007; 56: 1–40.
  51. Psichogiou M. Samarkos M. Mikos N. Hatzakis A. Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2. 2021; 9: 572. PubMed: https://pubmed.ncbi.nlm.nih.gov/34205861/
  52. Polack FP, Thomas SJ, Kitchin N. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383: 2603–2615.
  53. https://doi.org/10.1016/j.jdcr.2021.04.014
  54. Nowak MD, SordilloEM, Gitman MR, Mondolfi AEP
  55. Singh V, Upadhyay P, Reddy J, Granger J. SARS-CoV-2 respiratory co-infections: Incidence of viral and bacterial co-pathogens. Int J Infect Dis. 2021; 105: 617–620.
  56. PignyF, Wagner N, Rohr M, Mamin A, Cherpillod P, et al. Geneva Pediatric COVID Group.
  57. Makimaa H, Ingle H, Baldridge MT.
  58. Dee K,Goldfarb DM, Haney J, Amat JAR, Herder V, et al.
  59. Aghbash PS, Eslami N, Shirvaliloo M, Baghi First published: 25 May 2021.
  60. WHO Coronavirus disease 2019 (COVID-19) situation report—100. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200429-sitrep-100-covid-19.pdf?sfvrsn=bbfbf3d1_6
  61. Huang C. Wang Y, Li X, Ren L, Zhao J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.  2020;395: 497–506. PubMed: https://pubmed.ncbi.nlm.nih.gov/31986264/
  62. Cuadrado-Payán E, Montagud-Marrahi E, Torres-Elorza M, Bodro M, Blasco M, et al. SARS-CoV-2 and influenza virus co-infection.  2020;395: e84. PubMed: https://pubmed.ncbi.nlm.nih.gov/32423586/
  63. Yue H, Zhang M, Xing L, Wang K, Rao X, et al. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J Med Virol. 2020;92: 2870–2873. PubMed: https://pubmed.ncbi.nlm.nih.gov/32530499/
  64. Kim KW, Deveson IW, Pang CNI, Yeang M, Naing Z, et al. Respiratory viral co-infections among SARS-CoV-2 cases confirmed by virome capture sequencing. Sci Rep. 2021; 11: 34-39. PubMed: https://pubmed.ncbi.nlm.nih.gov/33594223/
  65. Reddy J, Singh V, Granger J. A Survey of Viral-bacterial Co-infection in Respiratory Samples Using Multiplex Real Time-PCR. 2019.
  66. Singh V, Upadhyay P, Reddy J, Granger J. SARS-CoV-2 respiratory co-infections: Incidence of viral and bacterial co-pathogens. Int J Infect Dis. 2021; 105: 617–620. PubMed: https://pubmed.ncbi.nlm.nih.gov/33640570/
  67. Mulcahy ME, McLoughlin RM. Staphylococcus aureus and influenza a virus: Partners in co-infection. M Bio. 2016; 7: e02068-16. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156308/
  68. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection between SARS-CoV-2 and Other Respiratory Pathogens. 2020; 323: 2085–2086. PubMed: https://pubmed.ncbi.nlm.nih.gov/32293646/
  69. Chen T, Song J, Liu H, Zheng H, Chen C. Positive Epstein–Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci Rep. 2021; 11: PubMed: https://pubmed.ncbi.nlm.nih.gov/34035353/
  70. Massey BW, Jayathilake K, Meltzer HY. Respiratory Microbial Co-infection With SARS-CoV-2. Front Microbiol. 2020; 11: 2079. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477285/
  71. Ciccarese G, Parodi A, Drago F. SARS-CoV-2 as possible inducer of viral reactivations. Dermatol Ther. 2020; 33; PubMed: https://pubmed.ncbi.nlm.nih.gov/32558172/
  72. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020; 40: 998‐PubMed: https://pubmed.ncbi.nlm.nih.gov/32170806/
  73. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020; 40: 998‐PubMed: https://pubmed.ncbi.nlm.nih.gov/32170806/
  74. Halstead SB. Dengue. The Lancet. 2007; 370: 1644‐PubMed: https://pubmed.ncbi.nlm.nih.gov/17993365/
  75. Setiati TE, Wagenaar JFP, de Kruif M, Mairuhu A. Changing epidemiology of dengue haemorrhagic fever in Indonesia. Dengue Bull. 2006; 30: 1‐
  76. Yan G, Lee CK, Lam L, Yan B, Chua YX, et al. Covert COVID‐19 and false‐positive dengue serology in Singapore. Lancet Infect Dis. 2020; 20: 536. PubMed: https://pubmed.ncbi.nlm.nih.gov/32145189/
  77. Yan G, Lee CK, Lam L, Yan B, Chua YX, et al. Covert COVID‐19 and false‐positive dengue serology in Singapore. Lancet Infect Dis. 2020; 20: 536. PubMed: https://pubmed.ncbi.nlm.nih.gov/32145189/
  78. Joob B, Wiwanitkit V. COVID‐19 can present with a rash and be mistaken for Dengue. J Am Acad Dermatol. 2020; 82: e177. PubMed: https://pubmed.ncbi.nlm.nih.gov/32213305/
  79. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382: 1708‐
  80. Chen D, Zhang Y, Wu X, Wu J, Gong F, et al. A survey of clinical and laboratory characteristics of dengue fever epidemic from 2014 to 2018 in Guangzhou, China. Ann Palliative Med. 2020; 9: 70‐PubMed: https://pubmed.ncbi.nlm.nih.gov/32005065/
  81. Bicudo N, Bicudo E, Costa JD, Castro J, Barra GB. Co‐infection of SARS‐CoV‐2 and dengue virus: a clinical challenge. Braz J Infect Dis. 2020; 24: 452‐454.PubMed: https://pubmed.ncbi.nlm.nih.gov/32866435/
  82. Saddique A, Rana MS, Alam MM, Ikram A, Usman M, et al. Emergence of co‐infection of COVID‐19 and dengue: a serious public health threat. J Infect. 2020; 81: 16-18. PubMed: https://pubmed.ncbi.nlm.nih.gov/32800797/
  83. Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, et al. Elevated glucose levels favor SARS‐CoV‐2 infection and monocyte response through a HIF‐1α/glycolysis‐dependent axis. Cell Metab. 2020; 32: 437‐PubMed: https://pubmed.ncbi.nlm.nih.gov/32697943/
  84. Al‐Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, et al. COVID‐19 and coagulation: bleeding and thrombotic manifestations of SARS‐CoV‐2 infection. Blood. 2020; 136: 489‐PubMed: https://pubmed.ncbi.nlm.nih.gov/32492712/
  85. Imad HA, Phumratanaprapin W, Phonrat B, Chotivanich K, Charunwatthana P, et al. Cytokine expression in dengue fever and dengue hemorrhagic fever patients with bleeding and severe hepatitis. Am J Trop Med Hyg. 2020; 102: 943‐PubMed: https://pubmed.ncbi.nlm.nih.gov/32124729/
  86. Hilmy AI, Dey RK, Imad HA, Yoosuf AN, Latheef AA, et al. Coronavirus disease 2019 and dengue: two case reports. J Med Case Rep. 2021; 15: 171‐
  87. Verduyn M, Allou N, Gazaille V, Andre M, Desroche T, et al. Co-infection of dengue and COVID-19: a case report. PLoS Negl Trop Dis. 2020; 14: e0008476. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398491/
  88. Epelboin L, Blonde R, Nacher M, Combe P, Collet L. COVID-19 and dengue co-infection in a returning traveller. J Travel Med. 2020; 27: taaa114.PubMed: https://pubmed.ncbi.nlm.nih.gov/32657339/
  89. Miah MA, Husna A. Co-infection, coepidemics of COVID-19, and dengue in dengueendemic countries: a serious health concern. J Med Virol. 2020; 93: 161-162.PubMed: https://pubmed.ncbi.nlm.nih.gov/32633829/
  90. Saddique A, Rana MS, Alam MM, Ikram A, Usman M, Salman M, et al. Emergence of co-infection of COVID-19 and dengue: a serious public health threat. J Infect. 2020; 81: e16-e18.PubMed: https://pubmed.ncbi.nlm.nih.gov/32800797/
  91. Pinky L, Dobrovolny HMCo-infections of the respiratory tract: viral competition for resources. PLoS One. 2016, 11: e0155589. PubMed: https://pubmed.ncbi.nlm.nih.gov/27196110/
  92. Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020; 188: 109819. PubMed: https://pubmed.ncbi.nlm.nih.gov/32569870/
  93. Impact of the COVID-19 pandemic on tuberculosis management in Spain ML Aznar J. Espinosa-Pereiro N. Saborit R. Zules I. Molina Adrián Sánchez-Montalvá. 2021.
  94. Srivastava K, Kant S, Verma A. Role of environmental factors in transmission of tuberculosis. DHH. 2015; 2: 12.
  95. Ge H, Wang X, Yuan X, Xiao G, Wang C, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020; 39: 1011–1019. PubMed: https://pubmed.ncbi.nlm.nih.gov/32291542/
  96. Tadolini M, Codecasa LR, García-García JM, et al. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. Eur Respir J. 2020; 56: 2001398. PubMed: https://pubmed.ncbi.nlm.nih.gov/32457198/
  97. Visca D, Ong CWN, Tiberi S, Centis R. D’Ambrosioh B. et al. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. 2021; 27: 151-165.PubMed: https://pubmed.ncbi.nlm.nih.gov/33547029/
  98. Yasri S, Wiwanitkit V. Tuberculosis and novel Wuhan coronavirus infection: Pathological interrelationship. Indian J Tuberc. 2020; 67: 264. PubMed: https://pubmed.ncbi.nlm.nih.gov/32553324/
  99. Sheerin D, Abhimanyu WX, Johnson WE, Coussens A. Systematic evaluation of transcriptomic disease risk and diagnostic biomarker overlap between COVID-19 and tuberculosis: a patient-level meta-analysis. MedRxiv. 2020;PubMed: https://pubmed.ncbi.nlm.nih.gov/33269371/
  100. Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020; 20: 397-398. PubMed: https://pubmed.ncbi.nlm.nih.gov/32457522/
  101. Cliff JM, Kaufmann SHE, McShane H, van Helden P, O’Garra A. The human immune response to tuberculosis and its treatment: a view from the blood. Immunol Rev. 2015; 264: 88-102. PubMed: https://pubmed.ncbi.nlm.nih.gov/25703554/
  102. Yang H, Lu S. COVID-19 and Tuberculosis. J Transl Int Med. 2020; 8: 59-65. PubMed: https://pubmed.ncbi.nlm.nih.gov/32983927/
  103. Minozzi S, Bonovas S, Lytras T, Pecoraro V, González-Lorenzo M, et al. Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: a systematic review and meta-analysis. Expert Opin Drug Saf. 2016; 15: 11-34. PubMed: https://pubmed.ncbi.nlm.nih.gov/27924643/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More