Abstract

Review Article

The pathogenesis of psoriasis: insight into a complex “Mobius Loop” regulation process

Yuankuan Jiang, Haiyang Chen, Jiayue Liu, Tianfu Wei, Peng Ge, Jialin Qu* and Jingrong Lin

Published: 22 October, 2021 | Volume 5 - Issue 1 | Pages: 020-025

Psoriasis is a chronic inflammatory skin disease with a complex mechanism, which is believed to be mainly based on immune disorders and activation of inflammatory pathways. However, we have combed through the literature and found that the pathogenesis of psoriasis might involve a “mobius loop” of “immunity-inflammation-oxidative stress-proliferation” process. The disordered immune environment of the skin might act as the basis, the outbreak of inflammatory factors as the mediator, and the imbalance of oxidative stress homeostasis as the activator. These factors work together, leading to abnormal proliferation of keratinocytes and further immune abnormalities, finally aggravating psoriasis. Therefore, here we review the latest evidence and advance in the pathogenesis of psoriasis, trying to contribute to further understanding and treatment of psoriasis.

Read Full Article HTML DOI: 10.29328/journal.apcr.1001024 Cite this Article Read Full Article PDF

Keywords:

Psoriasis; Pathogenesis; Mobius loop

References

  1. Rachakonda TD, Schupp XW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 2014; 70: 512-516. PubMed: https://pubmed.ncbi.nlm.nih.gov/24388724/  
  2. Christophers E. Psoriasis--epidemiology and clinical spectrum. Clin Exp Dermatol. 2001; 26: 314-320. PubMed: https://pubmed.ncbi.nlm.nih.gov/11422182/
  3. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM, Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013; 133: 377-385. PubMed: https://pubmed.ncbi.nlm.nih.gov/23014338/
  4. Committee on Psoriasis, Chinese Society of Dermatology. Guideline for the diagnosis and treatment of psoriasis in China (2018 simplified edition) [J]. Chin J Dermatol. 2019; 52: 223-230.
  5. Gesser B, Johansen C, Rasmussen MK, Funding AT, Otkjaer K, et al. Dimethylfumarate specifically inhibits the mitogen and stress-activated kinases 1 and 2 (MSK1/2): possible role for its anti-psoriatic effect. J Invest Dermatol. 2007; 127: 2129-2137. PubMed: https://pubmed.ncbi.nlm.nih.gov/17495961/
  6. Lehmann JC, Listopad JJ, Rentzsch CU, Igney FH, von Bonin A, et al. Dimethylfumarate induces immunosuppression via glutathione depletion and subsequent induction of heme oxygenase 1. J Invest Dermatol. 2007; 127: 835-845. PubMed: https://pubmed.ncbi.nlm.nih.gov/17235328/
  7. Huang YW, Tsai TF. A drug safety evaluation of risankizumab for psoriasis, Expert opinion on drug safety. 2020; 19: 395-402. PubMed: https://pubmed.ncbi.nlm.nih.gov/32100591/
  8. Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current Developments in the Immunology of Psoriasis. Yale J Biol Med. 2020; 93: 97-110. PubMed: https://pubmed.ncbi.nlm.nih.gov/32226340/
  9. Ni X, Lai Y. Keratinocyte: A trigger or an executor of psoriasis. J Leukoc Biol. 2020; 108: 485-491. PubMed: https://pubmed.ncbi.nlm.nih.gov/32170886/
  10. Christophers E, Metzler G, Röcken M. Bimodal immune activation in psoriasis. Br J Dermatol. 2014; 170: 59-65. PubMed: https://pubmed.ncbi.nlm.nih.gov/24117368/
  11. Bowcock AM, Krueger JG. Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol. 2005; 5: 699-711. PubMed: https://pubmed.ncbi.nlm.nih.gov/16138103/
  12. Elder JT, Expanded Genome-Wide Association Study Meta-Analysis of Psoriasis Expands the Catalog of Common Psoriasis-Associated Variants. J Invest Dermatol. Symposium Proc. 2018; 19: 77-78. PubMed: https://pubmed.ncbi.nlm.nih.gov/30471756/
  13. Craiglow BG, Boyden LM, Hu R, Virtanen M, Su J, et al. CARD14-associated papulosquamous eruption: A spectrum including features of psoriasis and pityriasis rubra pilaris. J Am Acad Dermatol. 2018; 79: 487-494. PubMed: https://pubmed.ncbi.nlm.nih.gov/29477734/
  14. Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PloS ONE. 2011; 6: e17160. PubMed: https://pubmed.ncbi.nlm.nih.gov/21364948/
  15. Kopp T, Riedl E, Bangert C, Bowman EP, Greisenegger E, et al. Clinical improvement in psoriasis with specific targeting of interleukin-23, Nature. 2015; 521: 222-226. PubMed: https://pubmed.ncbi.nlm.nih.gov/25754330/
  16. Guinea-Viniegra J, Jiménez M, Schonthaler HB, Navarro R, Delgado Y, et al. Targeting miR-21 to treat psoriasis. Sci Translatio Med. 2014; 6: 225re1. PubMed: https://pubmed.ncbi.nlm.nih.gov/24574341/
  17. Xu N, Meisgen F, Butler LM, Han G, Wang XJ, et al. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J Immunol. 2013; 190: 678-688. PubMed: https://pubmed.ncbi.nlm.nih.gov/23233723/
  18. Xu L, Leng H, Shi X, Ji J, Fu J, et al. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed Pharmacother. 2017; 90: 524-530. PubMed: https://pubmed.ncbi.nlm.nih.gov/28402921/
  19. Primo MN, Bak RO, Schibler B, Mikkelsen JG. Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes. Cytokine. 2012; 60: 741-748. PubMed: https://pubmed.ncbi.nlm.nih.gov/22917968/
  20. Wu R, Zeng J, Yuan J, Deng X, Huang Y, et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest. 2018; 128: 2551-2568. PubMed: https://pubmed.ncbi.nlm.nih.gov/29757188/
  21. Zhao M, Wang LT, Liang GP, Zhang P, Deng X, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol. 2014; 150: 22-30. PubMed: https://pubmed.ncbi.nlm.nih.gov/24316592/
  22. Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity. 2008; 41: 278-286. PubMed: https://pubmed.ncbi.nlm.nih.gov/18432408/
  23. Suárez-Fariñas M, Lowes MA, Zaba LC, Krueger JG. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA), PloS ONE. 2010; 5: e10247. PubMed: https://pubmed.ncbi.nlm.nih.gov/20422035/
  24. Li HB, Tong J, Zhu S, Batista PJ, Duffy  EE, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017; 548: 338-342. PubMed: https://pubmed.ncbi.nlm.nih.gov/28792938/
  25. Roberson ED, Liu Y, Ryan C, Joyce CE, Duan S, et al. A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol. 2012; 132: 583-592. PubMed: https://pubmed.ncbi.nlm.nih.gov/22071477/
  26. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: A comprehensive review. J Autoimmun. 2015; 64: 66-73. PubMed: https://pubmed.ncbi.nlm.nih.gov/26215033/
  27. Morizane S, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 2012; 39: 225-230. PubMed: https://pubmed.ncbi.nlm.nih.gov/22352846/
  28. Morizane S, Yamasaki K, Mühleisen B, Kotol PF, Murakami M, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol. 2012; 132: 135-143. PubMed: https://pubmed.ncbi.nlm.nih.gov/21850017/
  29. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Experimen Med. 2005; 202: 135-143. PubMed: https://pubmed.ncbi.nlm.nih.gov/15998792/
  30. Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med. 2010; 207: 2921-2930. PubMed: https://pubmed.ncbi.nlm.nih.gov/21115688/
  31. Santini SM, Lapenta C, Donati S, Spadaro F, Belardelli F, et al. Interferon-α-conditioned human monocytes combine a Th1-orienting attitude with the induction of autologous Th17 responses: role of IL-23 and IL-12, PloS One. 2011; 6: e17364. PubMed: https://pubmed.ncbi.nlm.nih.gov/21387004/
  32. Nestle FO, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J Clin Invest. 1994; 94: 202-209. PubMed: https://pubmed.ncbi.nlm.nih.gov/8040262/
  33. Yunusbaeva M, Valiev R, Bilalov F, Sultanova Z, Sharipova L, et al. Psoriasis patients demonstrate HLA-Cw*06:02 allele dosage-dependent T cell proliferation when treated with hair follicle-derived keratin 17 protein. Sci Rep. 2018; 8: PubMed: https://pubmed.ncbi.nlm.nih.gov/29666398/
  34. Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjravia N, Cueto I, et al. Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol. 2017; 26: 1075-1082. PubMed: https://pubmed.ncbi.nlm.nih.gov/28482118/
  35. Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol Immunol. 2018; 62: 1-13. PubMed: https://pubmed.ncbi.nlm.nih.gov/29205464/
  36. Gaffen SL. Structure and signalling in the IL-17 receptor family, Nature reviews. Immunology. 2009; 9: 556-567. PubMed: https://pubmed.ncbi.nlm.nih.gov/19575028/
  37. Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity. 2015; 43: 727-738. PubMed: https://pubmed.ncbi.nlm.nih.gov/26431948/
  38. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Communicati. 2014; 5: 5621. PubMed: https://pubmed.ncbi.nlm.nih.gov/25470744/
  39. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immuno. 2017; 140: 645-653. PubMed: https://pubmed.ncbi.nlm.nih.gov/28887948/
  40. Naik HB, Natarajan B, Stansky E, Ahlman MA, Teagueet H, et al. Severity of Psoriasis Associates With Aortic Vascular Inflammation Detected by FDG PET/CT and Neutrophil Activation in a Prospective Observational Study. Arteriosclerosis, Thrombosis, Vascular Biol. 2015; 35: 2667-2676. PubMed: https://pubmed.ncbi.nlm.nih.gov/26449753/
  41. Magenta A, Dellambra E, Ciarapica R, Capogrossi mc. Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium. 2016; 60: 207-217. PubMed: https://pubmed.ncbi.nlm.nih.gov/27103406/
  42. Aksoy M, Kirmit A. Thiol/disulphide balance in patients with psoriasis, Postȩpy dermatologii i alergologii. 2020; 37: 52-55. PubMed: https://pubmed.ncbi.nlm.nih.gov/32467684/
  43. Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd SL, et al. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol. 2008; 128: 2606-2614. PubMed: https://pubmed.ncbi.nlm.nih.gov/18463678/
  44. Ambrożewicz E, Wójcik P, Wroński A, Łuczaj W, Jastrząb A, et al. Pathophysiological Alterations of Redox Signaling and Endocannabinoid System in Granulocytes and Plasma of Psoriatic Patients, Cells. 2018; 7; 159. PubMed: https://pubmed.ncbi.nlm.nih.gov/30301214/
  45. Yang L, Fan X, Cui T, Wang G. Nrf2 Promotes Keratinocyte Proliferation in Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17. J Invest Dermatol. 2017; 137: 2168-2176. PubMed: https://pubmed.ncbi.nlm.nih.gov/28576737/
  46. Wolk K, Witte K, Witte E, Raftery M, Kokolakis G, et al. IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci Transl Med. 2013; 5: 204ra129. PubMed: https://pubmed.ncbi.nlm.nih.gov/24068736/
  47. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol. 2009; 129: 2175-2183. PubMed: https://pubmed.ncbi.nlm.nih.gov/19295614/
  48. Homey B, Dieu-Nosjean MC, Wiesenborn A, Massacrier C, Pin JJ, et al. Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol. 2000; 164: 6621-6632. PubMed: https://pubmed.ncbi.nlm.nih.gov/10843722/
  49. Anderson KS, Petersson S, Wong J, Shubbar E, Lokko NN, et al. Elevation of serum epidermal growth factor and interleukin 1 receptor antagonist in active psoriasis vulgaris. Br J Dermatol. 2010; 163: 1085-1089. PubMed: https://pubmed.ncbi.nlm.nih.gov/20716221/
  50. Marinello E, Pastorelli D, Alaibac M. A case of psoriasis pustolosa palmaris induced by cetuximab. BMJ Case Rep. 2016; 2016:PubMed: https://pubmed.ncbi.nlm.nih.gov/26994052/
  51. Mascia F, Cataisson C, Lee TC, et al. EGFR regulates the expression of keratinocyte-derived granulocyte/macrophage colony-stimulating factor in vitro and in vivo. J Invest Dermatol. 2010; 130: 682-693. PubMed: https://pubmed.ncbi.nlm.nih.gov/19890352/
  52. Segawa R, Shigeeda K, Hatayama T, Threadgill D, Mariani V, et al. EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line. J Dermatol Sci. 2018; 89: 290-298.
  53. Mascia F, Mariani V, Girolomoni G, Pastore S. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol. 2003; 163: 303-312. PubMed: https://pubmed.ncbi.nlm.nih.gov/12819035/
  54. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019; 19: 477-489. PubMed: https://pubmed.ncbi.nlm.nih.gov/31036962/
  55. Cai Y, Xue F, Quan C, Qu M, Liu N, et al. A Critical Role of the IL-1β-IL-1R Signaling Pathway in Skin Inflammation and Psoriasis Pathogenesis. J Invest Dermatol. 2019; 139: 146-156. PubMed: https://pubmed.ncbi.nlm.nih.gov/30120937/
  56. Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RD, et al. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol. 2019; 16: 100231. PubMed: https://pubmed.ncbi.nlm.nih.gov/30956944/
  57. Wang R, Li R. Adverse reactions of interleukin 17A and its receptor antagonist in the treatment of psoriasis (In Chinese). Chin J Dermatol. 2021; 54: 170-173.
  58. Mahmood A, Bisoyi P, Banerjee R, Yousuf M, Goswami SK. Mitoapocynin, a mitochondria targeted derivative of apocynin induces mitochondrial ROS generation and apoptosis in multiple cell types including cardiac myoblasts: a potential constraint to its therapeutic use. Mol Cell Biochem. 2021; 476: 2047-2059.PubMed: https://pubmed.ncbi.nlm.nih.gov/33515200/
  59. Lee HM, Shin DM, Yuk JM, Shi G, Choi DK, et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol. 2011; 186: 1248-1258. PubMed: https://pubmed.ncbi.nlm.nih.gov/21160040/
  60. Qiang L, Yang S, Cui YH, He YY. Keratinocyte autophagy enables the activation of keratinocytes and fibroblasts and facilitates wound healing. Autophagy. 2020; 17: 2128-2143.PubMed: https://pubmed.ncbi.nlm.nih.gov/32866426/
  61. Lin J, Liu X, Hou S, An L, Lin X, et al. Effect of camptothecin on proliferation, Apoptosis and Telomerase Activity in HaCaT Cells (In Chinese). Chin J Dermatol Venereol. 2006; 10: 586-588.
  62. Guo Y, Zhang X, Wu T, Hu X, Su J, et al. Autophagy in Skin Diseases. Dermatology. 2019; 235: 380-389. PubMed: https://pubmed.ncbi.nlm.nih.gov/31269494/
  63. Hao Y, Zhang L, et al. Effect of camptothecin on autophagy of HaCaT cells (In Chinese). Chin J Dermatol. 2017; 50: 86-90.

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

  • Why Down-managing Backlog Forensic DNA Case Entries Matters
    JH Smith* and JS Horne JH Smith*, JS Horne. Why Down-managing Backlog Forensic DNA Case Entries Matters. J Forensic Sci Res. 2024: doi: 10.29328/journal.jfsr.1001056; 8: 001-008
  • Surgical and Delivery Outcomes of Coexisting Uterine Fibroids with Pregnancies in Nigeria
    Ade-Ojo Idowu Pius* and Odetola Amoo A Ade-Ojo Idowu Pius*, Odetola Amoo A. Surgical and Delivery Outcomes of Coexisting Uterine Fibroids with Pregnancies in Nigeria. Clin J Obstet Gynecol. 2024: doi: 10.29328/journal.cjog.1001161; 7: 037-041
  • Intradermal and Subcutaneous Lignocaine for Arterial Blood Gas Sampling: A Randomized Controlled Trial
    Charlene Swanevelder, Lila Prasad, Kevin YY Chen, Irene Zeng, Nicola Corna, Anh Nguyen and Conroy Wong* Charlene Swanevelder, Lila Prasad, Kevin YY Chen, Irene Zeng, Nicola Corna, Anh Nguyen, Conroy Wong*. Intradermal and Subcutaneous Lignocaine for Arterial Blood Gas Sampling: A Randomized Controlled Trial. J Pulmonol Respir Res. 2024: doi: 10.29328/journal.jprr.1001054; 8: 023-028
  • Death Wishes, Aging Patients, and Euthanasia
    Mareike Wolf-Fédida, Jelena Rosic, Gilles Arsène Aizan, Fanny Houzé and Laurent Vidal Mareike Wolf-Fédida, Jelena Rosic, Gilles Arsène Aizan, Fanny Houzé, Laurent Vidal. Death Wishes, Aging Patients, and Euthanasia. Insights Depress Anxiety. 2024: doi: 10.29328/journal.ida.1001040; 8: 005-009
  • Effect of TAK242 on MCP-1 and TGF-β in COPD Rats
    Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu and Jian Chen and Lijun Chen* Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu, Jian Chen and Lijun Chen*. Effect of TAK242 on MCP-1 and TGF-β in COPD Rats. J Radiol Oncol. 2024: doi: 10.29328/journal.jro.1001060; 8: 014-021

Read More

Most Viewed

Read More

Help ?