Abstract

Research Article

Amyotropyc Lateral Sclerosis and Endogenous -Esogenous Toxicological Movens: New model to verify other Pharmacological Strategies

Mauro Luisetto*, Behzad Nili-Ahmadabadi, Nilesh M Meghani, Ghulam Rasool Mashori, Ram Kumar Sahu, Kausar Rehman Khan, Ahmed Yesvi Rafa, Luca Cabianca, Gamal Abdul Hamid and Farhan Ahmad Khan

Published: 05 August, 2018 | Volume 2 - Issue 1 | Pages: 029-048

In 1874 J.M. Charcot was the first to describe ALS amyotrophic lateral sclerosis, a disease with an high non response therapy rate also to the actual therapy.

ALS is not clearly associate to only single etio-patogenetic movens but many process seem involved.

Also the strange geographic diffusion of different forms contribute to a complex syndromic pathology.

The introducing of new theories and approach can help to find more efficacy therapeutic strategies.

In this work the different neuronal damage movens and new therapeutic strategies are analyzed to produce a Unic global response to the pathologic process useful in next clinical application.

Genetic factors must be considered also added to environmental movens but also to the endogenous microenvironment of motoneuron involved.

A toxicological-biochemical-imunological approach can be useful tool to find new therapeutic strategies.

Or to improve local availability of pharmacological molecules.

Read Full Article HTML DOI: 10.29328/journal.apcr.1001009 Cite this Article Read Full Article PDF

Keywords:

ALS; Amyotrophic lateral sclerosis; Etiology; Pathology; Endogenous esogenous factors

References

  1. Lyon M, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C. Inflammation, Immunity and ALS: Etiology and Pathology. Muscle Nerve. 2018; Ref.: https://goo.gl/WE79i4
  2. Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med Genet. 2018; 30: 252-258. Ref.: https://goo.gl/nkpX3J
  3. Di Pietro L, Lattanzi W, Bernardini C. Skeletal Muscle MicroRNAs as Key Players in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2018; 19. pii: E1534. Ref.: https://goo.gl/D8iWAf
  4. Baskaran P, Shaw C, Guthrie S. TDP-43 Causes neurotoxicity and cytoskeletal dysfunction in primary cortical neurons. PLoS One. 2018; 13: e0196528. Ref.: https://goo.gl/KTHGCu
  5. Deng B, Lv W, Duan W, Liu Y, Li Z, et al. Progressive Degeneration and Inhibition of Peripheral Nerve Regeneration in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis. Cell Physiol Biochem. 2018; 46: 2358-2372. Ref.: https://goo.gl/eiLgXN
  6. Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett. 2018; pii: S0304-3940(18)30261-1. Ref.: https://goo.gl/jrRgyG
  7. Mammana S, Fagone P, Cavalli E, Basile MS, Petralia MC, et al. The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci. 2018;19: pii: E831. Ref.: https://goo.gl/8NgdcH
  8. Shin JH, Lee YA, Lee JK, Lee YB, Cho W, et al. Concurrent blockade of free radical and microsomal prostaglandin E synthase-1-mediated PGE2 production improves safety and efficacy in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2012; 122: 952-561. Ref.: https://goo.gl/piQZ6a
  9. Okumura H. Epidemiological and clinical patterns of western pacific amyotrophic lateral sclerosis (ALS) in Guam and sporadic ALS in Rochester, Minnesota, U.S.A. and Hokkaido, Japan: a comparative study. Hokkaido Igaku Zasshi. 2003; 78: 187-195. Ref.: https://goo.gl/SqCzwP
  10. Takeda T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology. 2018; 38: 72-81. Ref.: https://goo.gl/yCH5f6
  11. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, et al. SOD1 in Amyotrophic Lateral Sclerosis: "Ambivalent" Behavior Connected to the Disease. Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan. Int J Mol Sci. 2018; 19. pii: E1345. Ref.: https://goo.gl/PJSLCz
  12. Oeckl P, Weydt P, Steinacker P, Anderl-Straub S, Nordin F, et al. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry. 2018; pii: jnnp-2018-318868. Ref.: https://goo.gl/ny5pT4
  13. Patai R, Nógrádi B, Meszlényi V, Obál I, Engelhardt J, et al. [Calcium ion is a common denominator in the pathophysiological processes of amyotrophic lateral sclerosis]. Ideggyogy Sz. 2017; 70: 247-257. Ref.: https://goo.gl/2A5B1P
  14. Manabe Y, Kashihara K, Shiro Y, Shohmori T, Abe K. Enhanced Fos expression in rat lumbar spinal cord cultured with cerebrospinal fluid from patients with amyotrophic lateral sclerosis.Neurol Res. 1999; 21: 309-312. Ref.: https://goo.gl/UsqiAV
  15. Luisetto M.Intra- Local Toxicology Aspect Time Related in Some Pathologic Conditions. Open Acc J of Toxicol. 2017; 2: 555586. Ref.: https://goo.gl/8j5M41
  16. Luisetto M, Nili-Ahmadabadi B, Mashori GR, Yesvi A, Sahu RK. Brain and immune system: KURU disease a toxicological process? J Neurosci Neurol Disord. 2018; 2: 014-027. Ref.: https://goo.gl/zzeCN3
  17. Case AJ. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel). 2017; 6. pii: E82. Ref.: https://goo.gl/rMYNLH
  18. Nazıroğlu M, Muhamad S, Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert Rev Clin Pharmacol. 2017; 10: 773-782. Ref.: https://goo.gl/ipcBbm
  19. Adebayo OL, Adenuga GA, Sandhir R. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sci. 2016; 152: 145-155. Ref.: https://goo.gl/MCs1mB
  20. Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009; 73: 805-811. Ref.: https://goo.gl/r4mPbA
  21. McGeer PL, Steele JC. The ALS/PDC syndrome of Guam: potential biomarkers for an enigmatic disorder. Prog Neurobiol. 2011; 95: 663-669. Ref.: https://goo.gl/hcVWp4
  22. Muyderman H, ChenT. Mitochondrial dysfunction in amyotrophic lateral sclerosis – a valid pharmacological target? Br J Pharmacol. 2014; 171: 2191–2205. Ref.: https://goo.gl/GFmpqB
  23. Zarei R, Carr K, Reiley L, Diaz K, Guerra O, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015; 6: 171. Ref.: https://goo.gl/qAk68k
  24. Kasinathan N, Jagani HV, Alex AT, Volety SM, Rao JV. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 2015; 22: 243-257. Ref.: https://goo.gl/5SCGtQ
  25. Sharma U, Badyal PN, Gupta S. Polymeric Nanoparticles Drug Delivery to Brain: A Review. Int J Pharmacol Pharm Sci. 2015 2: 5; 60-69. Ref.: https://goo.gl/Kdsjha
  26. Küry P, Nath A, Créange A, Dolei A, Marche P. et al. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med. 2018; 24: 379-394. Ref.: https://goo.gl/Y4zq5F
  27. Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008; 9(Suppl 3): S5. Ref.: https://goo.gl/snHWGK
  28. Jia Liu, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front. Immunol. 2017; 8: 1005. Ref.: https://goo.gl/XLkSoQ

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?