Review Article

MicroRNA Therapeutics in Triple Negative Breast Cancer

Sarmistha Mitra*

Published: 27 June, 2017 | Volume 1 - Issue 1 | Pages: 009-017

Breast cancer is a complex disease and one of the main causes of cancer-related mortality in women worldwide. In case of approximately 15% of all breast cancers, three markers i.e. estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptors-2 (HER2) are not expressed, and is commonly termed as triple-negative breast cancer (TNBC). Particularly, TNBC is associated with a higher percentage of breast cancer related mortality, which is often aggressive and most frequently found with a BRCA1 mutation or increased basal marker expression. However, due to the limitations of chemotherapy and radiation based treatment; the current challenge is to establish a new strategy of diagnosis and treatment of TNBC. The deregulation of a number of microRNAs (miRNAs) in breast cancer has been widely reported. Therefore, this review is directed towards enhancing our understanding of the involvement of various miRNAs in the pathology of TNBC, their upregulations and downregulations and the effects on various factors. From recent studies a number of miRNAs are found to be related with TNBC, which have great potential to be used as a biomarker to determine the disease prognosis and predict the fate of disease. Again miRNA can be targeted to be applied as a therapeutic to provide a great benefit to the patients of TNBC by finding a new, safe, and effective treatment strategy.

Read Full Article HTML DOI: 10.29328/journal.hjpcr.1001003 Cite this Article Read Full Article PDF


miRNA; HER2; TNBC; Breast cancer


  1. Akhtar M, Dasgupta S, Rangwala M. Triple negative breast cancer: an Indian perspective. Breast Cancer (Dove Med Press). 2015; 7: 239-243. Ref.: https://goo.gl/qkjztY
  2. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011; 16: 1-11. Ref.: https://goo.gl/rCRpbF
  3. Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJ, et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res. 2015; 17: 134. Ref.: https://goo.gl/5VDvxe
  4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007; 13: 4429-4434. Ref.: https://goo.gl/ixFkXG
  5. Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, et al. Clinicopathologic features, patterns of recurrence, and survival among women with triple‐negative breast cancer in the National Comprehensive Cancer Network. Cancer. 2012; 118: 5463-5472. Ref.: https://goo.gl/C2W1Un
  6. Sachdev JC, Ahmed S, Mirza MM, Farooq A, Kronish L, et al. Does race affect outcomes in triple negative breast cancer? Breast cancer(Auckl). 2010; 4: 23-33. Ref.: https://goo.gl/DPyd2R
  7. Wei X-Q, Li X, Xin X-J, Tong Z-S, Zhang S. Clinical features and survival analysis of very young (age<35) breast cancer patients. Asian Pacific Journal of Cancer Prevention. 2013; 1: 5949-5952. Ref.: https://goo.gl/MxQDZF
  8. Thomas K, Shiao J, Rao R, Minhajuddin A, Spangler A, et al. Constructing a Clinicopathologic Prognostic Model for Triple-Negative Breast Cancer. American Journal of Hematology/Oncology®, 2017; 13: 11-21. Ref.: https://goo.gl/da2Ue8
  9. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer res. 2005; 65: 7065-7070. Ref.: https://goo.gl/AWPv6j
  10. Schwarzenbacher D, Balic M, Pichler M. The role of microRNAs in breast cancer stem cells. Int J Mol Sci. 2013; 14: 14712-14723. Ref.: https://goo.gl/2ZLHWG
  11. Serpico D, Molino L Di, Cosimo S. microRNAs in breast cancer development and treatment. Cancer Treat Rev. 2014; 40: 595-604. Ref.: https://goo.gl/KNeCPB
  12. Stover DG, Winer EP. Tailoring adjuvant chemotherapy regimens for patients with triple negative breast cancer. Breast. 2015; 24: 132-135. Ref.: https://goo.gl/RWURDL
  13. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern Pathology. 2011; 24: 157-167. Ref.: https://goo.gl/YYuZYo
  14. Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol. 2006; 59: 729-735. Ref.: https://goo.gl/ox1RqW
  15. Irvin WJ, Carey LA. What is triple-negative breast cancer? Eur J Cancer. 2008; 44: 2799-2805. Ref.: https://goo.gl/m7Tysk
  16. Rakha EA, El‐Sayed ME, Green AR, Lee AH, Robertson JF, et al. Prognostic markers in triple‐negative breast cancer. Cancer. 2007a; 109: 25-32. Ref.: https://goo.gl/G3oWcS
  17. Rakha EA, Tan DS, Foulkes WD, Ellis IO, Tutt A, at el. Are triple-negative tumours and basal-like breast cancer synonymous? Breast cancer research. 2007b; 9: 404. Ref.: https://goo.gl/VKeMR6
  18. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003; 100: 8418-8423. Ref.: https://goo.gl/XGzMaq
  19. Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer. 2007; 7: 937-948. Ref.: https://goo.gl/rqLiiJ
  20. Fadare O, Tavassoli FA. Clinical and pathologic aspects of basal-like breast cancers. Nat Clin Pract Oncol. 2008; 5: 149-159. Ref.: https://goo.gl/rbTDYf
  21. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, et al. How basal are triple‐negative breast cancers? Int J Cancer. 2008; 123: 236-240. Ref.: https://goo.gl/zLpZxL
  22. Calza S, Hall P, Auer G, Bjöhle J, Klaar S, et al. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res. 2006; 8: R34. Ref.: https://goo.gl/zAJs3q
  23. Hashmi AA, Edhi MM, Naqvi H, Faridi N, Khurshid A, et al. Clinicopathologic features of triple negative breast cancers: an experience from Pakistan. Diagn Pathol. 2014; 9: 43. Ref.: https://goo.gl/CbeVRJ
  24. Cheng H, Qin Y, Fan H, Su P, Zhang X, et al. Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn Pathol. 2013; 8: 129. Ref.: https://goo.gl/YcLpjk
  25. Klingen TA, Chen Y, Suhrke P, Stefansson IM, Gundersen MD, et al. Expression of thyroid transcription factor-1 is associated with a basal-like phenotype in breast carcinomas. Diagn Pathol. 2013; 8: 80. Ref.: https://goo.gl/BCFoZv
  26. Liu L, Liu Z, Qu S, Zheng Z, Liu, et al. Small breast epithelial mucin tumor tissue expression is associated with increased risk of recurrence and death in triple-negative breast cancer patients. Diagn Pathol. 2013b; 8: 71. Ref.: https://goo.gl/Zs3pTt
  27. Nass N, Dittmer A, Hellwig V, Lange T, Beyer JM, et al. Expression of transmembrane protein 26 (TMEM26) in breast cancer and its association with drug response. Oncotarget. 2016; 7: 38408-38426. Ref.: https://goo.gl/QVgCfH
  28. Yamagishi Si, Matsui T, Fukami K. Role of receptor for advanced glycation end products (RAGE) and its ligands in cancer risk. Rejuvenation Res. 2015; 18: 48-56. Ref.: https://goo.gl/UkVvuy
  29. Radia A-M, Yaser A-M, Ma X, Zhang J, Yang C, et al. Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci. 2013; 14: 7959-7978. Ref.: https://goo.gl/CmgGy4
  30. Svoboda M, Sana J, Redova M, Navratil J, Palacova M, et al. MiR-34b is associated with clinical outcome in triple-negative breast cancer patients. Diagn Pathol. 2012; 7: 31. Ref.: https://goo.gl/YZJ4Rb
  31. Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite S, et al. Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol. 2012; 7: 27. Ref.: https://goo.gl/Cv32X7
  32. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006; 19: 264-271. Ref.: https://goo.gl/x6U4g8
  33. Fulford L, Easton D, Reis‐Filho J, Sofronis A, Gillett C, et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology. 2006; 49: 22-34. Ref.: https://goo.gl/wNDjAk
  34. Reis‐Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, et al. Metaplastic breast carcinomas are basal‐like tumours. Histopathology. 2006; 49: 10-21. Ref.: https://goo.gl/7yuofu
  35. Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007; 8: 235-244. Ref.: https://goo.gl/bTe5m9
  36. Carter M, Hornick JL, Lester S, Fletcher CD. Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 2006; 30: 300-309. Ref.: https://goo.gl/UYu7xG
  37. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. IV. Squamous cell carcinoma of ductal origin. Cancer. 1990a; 65: 272-276. Ref.: https://goo.gl/ZhMcrA
  38. Rosen PP, Ernsberger D. Low-Grade Adenosquamous Carcinoma: A Variant of Metaplastic Mammary Carcinoma. Am J Surg Pathol. 1987; 11: 351-358. Ref.: https://goo.gl/jbrMzF
  39. Hanna W, Kahn HJ. Ultrastructural and immunohistochemical characteristics of mucoepidermoid carcinoma of the breast. Hum Pathol. 1985; 16: 941-946. Ref.: https://goo.gl/z1AY4D
  40. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast: V. Metaplastic carcinoma with osteoclastic giant cells. Hum Pathol. 1990b; 21: 1142-1150. Ref.: https://goo.gl/2PU5oL
  41. Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001; 25: 1009-1016. Ref.: https://goo.gl/JVCMpx
  42. Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010; 10: 297-308. Ref.: https://goo.gl/21xJAU
  43. Le X-F, Merchant O, Bast RC, Calin, GA. The roles of microRNAs in the cancer invasion-metastasis cascade. Cancer Microenviron. 2010; 3:137-147. Ref.: https://goo.gl/S73wzr
  44. Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008; 10: 203. Ref.: https://goo.gl/H727oi
  45. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007; 8: 214.Ref.: https://goo.gl/J2kvV8
  46. Van Schooneveld E,Wildiers H, Vergote I, Vermeulen PB, Dirix LY, et al. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015; 17: 21. Ref.: https://goo.gl/eRZ3Dz
  47. Lehmann BD, Bauer JA, Chen X. Sanders ME, Chakravarthy AB, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011; 121: 2750-2767. Ref.: https://goo.gl/JdPQuW
  48. Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, et al. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet. 2017; 62: 15-24. Ref.: https://goo.gl/2beH8d
  49. Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, et al. Down‐regulation of BRCA1 expression by miR‐146a and miR‐146b‐5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011b; 3: 279-290. Ref.: https://goo.gl/uyDCs7
  50. Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011a; 3: 279-290. Ref.: https://goo.gl/b6LLyy
  51. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008; 29: 1963-1966. Ref.: https://goo.gl/vsxoFy
  52. Crippa E, Lusa L, De Cecco L, Marchesi E, Calin GA, et al. miR-342 regulates BRCA1 expression through modulation of ID4 in breast cancer. PloS one. 2014; 9. Ref.: https://goo.gl/hGwK4D
  53. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011; 41: 210-220. Ref.: https://goo.gl/hcRb6n
  54. Tanic M, Yanowski K, Gómez‐López G, Rodriguez‐Pinilla MS, Marquez‐Rodas I, et al. MicroRNA expression signatures for the prediction of BRCA1/2 mutation‐associated hereditary breast cancer in paraffin‐embedded formalin‐fixed breast tumors. Int J Cancer. 2015; 136: 593-602. Ref.: https://goo.gl/grGd5T
  55. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007; 316: 608-611. Ref.: https://goo.gl/GF482e
  56. Zonari E, Pucci F, Saini M, Mazzieri R, Politi LS, et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective anti-tumor responses. Blood. 2013. Ref.: https://goo.gl/hGCSBT
  57. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008; 10: 593-601. Ref.: https://goo.gl/zVDmYo
  58. Gebeshuber CA, Zatloukal K, Martinez J. miR‐29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009; 10: 400-405. Ref.: https://goo.gl/441YmF
  59. Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep. 2014; 31: 1509-1516. Ref.: https://goo.gl/fnLsKJ
  60. Gaur AB, Holbeck SL, Colburn NH, Israel MA. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 2011; 13: 580-590. Ref.: https://goo.gl/byJacU
  61. Wang Q, Liu S, Tang Y, Liu Q, Yao Y. MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PloS one. 2014; 9. Ref.: https://goo.gl/aJ5xsF
  62. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, et al. Gap junction-mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011; 71: 1550-1560. Ref.: https://goo.gl/pvkf4M
  63. Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014; 5: 9650-9663. Ref.: https://goo.gl/hTpniA
  64. Chen J, Shin VY, Siu MT, Ho JC, Cheuk I, et al. miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC cancer. 2016; 16: 887. Ref.: https://goo.gl/JRTnbS
  65. Abdellatif M. Differential expression of microRNAs in different disease states. Circ Res. 2012; 110: 638-650. Ref.: https://goo.gl/8DbLUY
  66. Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015; 97: 104-121. Ref.: https://goo.gl/2KEucF
  67. Kim NH, Kim HS, Li XY, Lee I, Choi HS, et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011; 195: 417-433. Ref.: https://goo.gl/16dmCU
  68. Song SJ, Poliseno L, Song MS, Ala U, Webster K, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013; 154: 311-324. Ref.: https://goo.gl/mFpe5j
  69. Graveel CR, Calderone HM, Westerhuis JJ, Winn ME, Sempere LF. Critical analysis of the potential for microRNA biomarkers in breast cancer management. Breast Cancer (Dove Med Press). 2015; 7: 59-79. Ref.: https://goo.gl/MeC4Ze
  70. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007; 449: 682-688. Ref.: https://goo.gl/T28Wx1
  71. Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, et al. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328,-519c and-520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol. 2011; 81: 783-792. Ref.: https://goo.gl/AJpbNX
  72. Amschler K, Schön MP, Pletz N, Wallbrecht K, Erpenbeck L, et al. NF-κB inhibition through proteasome inhibition or ikkβ blockade increases the susceptibility of melanoma cells to cytostatic treatment through distinct pathways. Journal of Investigative Dermatology. 2010; 130: 1073-1086. Ref.: https://goo.gl/4LZLsx
  73. Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014b; 5: 9650-9663. Ref.: https://goo.gl/rHgdDT
  74. Gabriely G, Teplyuk NM, Krichevsky AM. Context effect: microRNA-10b in cancer cell proliferation, spread and death. Autophagy. 2011; 7: 1384-1386. Ref.: https://goo.gl/JeGrjH
  75. Lee KH, Goan YG, Hsiao M, Lee CH, Jian SH, et al. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res. 2009; 315: 2529-2538. Ref.: https://goo.gl/pQ5E1y
  76. Okoye JO, Okoye FO. miRNA and Target Oncogene Regulation in Triple Negative Breast Cancer: An Age, Ethnic and Environmental Related Neoplastic Event. JCTI. 2015; 2: 66-80. Ref.: https://goo.gl/LAue9x
  77. Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA, et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell cycle. 2011; 10: 507-517. Ref.: https://goo.gl/epHQG9
  78. Wang Y, Rathinam R, Walch A, Alahari SK. ST14 (suppression of tumorigenicity 14) gene is a target for miR-27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation. J Biol Chem. 2009; 284: 23094-23106. Ref.: https://goo.gl/d2hUNM
  79. Wu Q, Wang C, Lu Z, Guo L, Ge Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim acta. 2012; 413: 1058-1065. Ref.: https://goo.gl/rZXH2c
  80. Zavala V, Pérez-Moreno E, Tapia T, Camus M, Carvallo P. MiR-146a and miR-638 in BRCA1-deficient triple negative breast cancer tumors, as potential biomarkers for improved overall survival. Cancer Biomarkers. 2016; 16: 99-107. Ref.: https://goo.gl/Tm2PTf
  81. Liu H, Wang Y, Li X, Zhang Y-j, Li J, et al. Expression and regulatory function of miRNA182 in triple-negative breast cancer cells through its targeting of profilin 1. Tumour Biol. 2013a; 34: 1713-1722. Ref.: https://goo.gl/hVysfE
  82. Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2012; 21: 1236-1243. Ref.: https://goo.gl/5FGVmG
  83. Ding L, Ni J, Yang F, Huang L, Deng H, et al. Promising therapeutic role of miR-27b in tumor. Tumour Biol. 2017; 39. Ref.: https://goo.gl/DhSVYM
  84. Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, et al. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer. Cancer Res. 2013; 73: 2884-2896. Ref.: https://goo.gl/JHqgXT
  85. Fkih M'hamed I, Privat M, Ponelle F, Penault-Llorca F, Kenani A. Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell Oncol (Dordr). 2015; 38: 433-442.Ref.: https://goo.gl/HxFqof
  86. Fkih M'hamed I, Privat M, Trimeche M, Penault-Llorca F, Bignon YJ. et al. miR-10b, miR-26a, miR-146a And miR-153 Expression in Triple Negative Vs Non Triple Negative Breast Cancer: Potential Biomarkers. Pathol Oncol Res. 2017. Ref.: https://goo.gl/7y1JFS

Similar Articles

  • MicroRNA Therapeutics in Triple Negative Breast Cancer
    Sarmistha Mitra* Sarmistha Mitra*. MicroRNA Therapeutics in Triple Negative Breast Cancer . . 2017 doi: 10.29328/journal.hjpcr.1001003; 1: 009-017
  • Rosai-Dorfman disease presenting as a breast mass
    Ding Dai*, Qi Cai, Nasreen A. Vohra, Jan Wong, Zsuzsanna P. Therien, Karlene Hewan-Lowe and Ann Sutton Ding Dai*,Qi Cai, Nasreen A. Vohra,Jan Wong, Zsuzsanna P. Therien,Karlene Hewan-Lowe,Ann Sutton. Rosai-Dorfman disease presenting as a breast mass . . 2019 doi: 10.29328/journal.apcr.1001012; 3: 008-014

Recently Viewed

Read More

Most Viewed

Read More