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Introduction 

In recent years, the world has witnessed a concerning 
surge in cancer-related mortality, with cancer accounting for a 
substantial portion of global deaths. The leading contributors 
to this worldwide trend are liver cancer, colorectal cancer, 
and breast cancer, collectively responsible for a signiϐicant 
proportion of cancer-related fatalities. These trends reϐlect a 

broader global phenomenon, with the age-adjusted incidence 
and mortality rates of cancer in developed countries showing 
a steady upward trajectory since the mid-1980s  [1].

Liver cancer has gained notoriety, as its incidence rate 
has exhibited a relentless climb in various parts of the world 
[2]. Globally, liver cancer ranks as the sixth most frequently 
diagnosed cancer and the third leading cause of cancer-
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Abstract 

Background: Liver cancer is a global health concern, with overweight and obese individuals 
exhibiting an increased risk of its development. Understanding the interplay between obesity-related 
factors and liver cancer incidence is crucial for early prediction and intervention.

Aim: The aim of this investigation was to construct and validate an extreme gradient boosting 
(XGBoost) based machine learning model for the purpose of establishing a one-year liver cancer risk 
prediction system specifi cally tailored to overweight and obese patients. In addition, this study sought 
to compare the predictive performance of the XGBoost model with those of a random forest model and 
a logistic regression model, while also identifying the most infl uential predictive features for liver cancer 
incidence.

Methods: A comprehensive retrospective analysis was conducted on MIMIC III data comprising 
2,354 patients. To predict the risk of liver cancer development, three machine learning models were 
developed: XGBoost, random forest, and logistic regression. Feature selection was executed using a 
stepwise regression procedure encompassing both forward selection and backward elimination.

Results: The stepwise regression technique unveiled 14 predictive factors for liver cancer 
incidence. Among the patient cohort, 132 individuals developed liver cancer within a year of follow-up, 
while 2,222 did not. Notably, most liver cancer cases occurred in male patients (60%). Statistically 
signifi cant diff erences were observed between patients with liver cancer and those without, in terms 
of age, gender, total bilirubin, platelet, albumin, chloride, potassium, sodium, prothrombin time (PT) 
and alanine aminotransferase (ALT). The XGBoost model exhibited an impressive area under the 
receiver operating characteristic curve (AUROC) of 99%, Random Forest (RF) of 99%, and Logistic 
Regression (LR) of 90%. In a multivariate analysis, total bilirubin, creatinine levels, age, gender, ALT, 
alkaline phosphate (ALP), PT, calcium, and chloride emerged as independent predictors for liver cancer 
incidence.

Conclusion: The XGBoost model demonstrated superior predictive performance when compared 
to the RF and LR models. If corroborated through prospective studies, the XGBoost model may prove 
to be a valuable tool for the early prediction of liver cancer risk in overweight or obese individuals. Such 
predictive capabilities could, in turn, facilitate the implementation of timely preventive interventions 
against liver cancer.

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.apcr.1001039&domain=pdf&date_stamp=2023-12-28
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related death, accounting for approximately 500,000 new 
cases each year [1]. The prognosis for liver cancer remains 
grim, with a 5-year survival rate ranging between a mere 
6% to 11%. A signiϐicant proportion of liver cancer cases 
can be attributed to infections with hepatitis C virus (HCV) 
and hepatitis B virus (HBV) [3], with other common risk 
factors including excessive alcohol consumption, tobacco 
use, and exposure to aϐlatoxin B1. The escalating incidence 
and mortality rates of liver cancer in developed countries 
have correspondingly given rise to a burgeoning epidemic 
of overweight and obesity, which is a global public health 
challenge [4]. These conditions have afϐlicted a substantial 
portion of the world’s population, with approximately 1.9 
billion adults grappling with these issues. The underlying 
causes are multifaceted, encompassing factors such as 
sedentary lifestyles and insufϐicient physical activity. Notably, 
more than 600 million adults are categorized as overweight 
or obese among this demographic. The World Health 
Organization (WHO) has reported a grim statistic obesity 
contributes to roughly 3.4 million deaths annually, involving 
not only liver cancer but also other non-communicable 
diseases, including cardiovascular disorders and various 
forms of cancer [5]. While some observational studies have 
suggested a connection between excess body weight and 
an elevated risk of various cancers, the evidence pertaining 
to liver cancer has remained inconclusive and scarce [6]. 
Nevertheless, some research has identiϐied obesity as an 
independent risk factor for a spectrum of cancers, including 
breast cancer, colon cancer, renal cell carcinoma, and liver 
cancer. Meta-analyses exploring the link between obesity or 
overweight and the onset of liver cancer have revealed a 17% 
to 89% increased risk compared to those with normal weight 
[7,8]. In a comprehensive analysis of prospective studies, a 
5kg/ m2 increase in body mass index (BMI) was associated 
with a 25% increased risk of liver cancer [8,9]. A systematic 
review comprising 10 different cohort studies substantiated 
a positive correlation between obesity and liver cancer [10].

Against this backdrop, this study endeavors to introduce 
and validate a machine-learning algorithm known as extreme 
gradient boosting (XGBoost), with the aim of constructing 
a predictive model for liver cancer risk over a one-year 
period. This model is tailored speciϐically to the overweight 
and obese population, drawing from data in the MIMIC-III 
database. The study seeks to benchmark the performance 
of XGBoost against well-established algorithms, including 
Random Forest (RF) and Logistic Regression model (LR). 
Additionally, we aim to elucidate the most critical features 
underpinning the prediction model, shedding light on the 
complex relationship between obesity and liver cancer risk 
on a global scale.

Methods
Data source and study population

For our study, we harnessed the extensive Medical 

Information Mart for Intensive Care (MIMIC III) Version 
1.4 database. MIMIC III serves as an openly accessible 
repository, hosting de-identiϐied records of 46,520 patients 
and encompassing a total of 58,976 admissions at the Beth 
Israel Deaconess Medical Center in Boston, USA. The data 
range from June 1, 2001, to October 31, 2012. This invaluable 
resource contains a wealth of information, including 
demographic proϐiles, admission notes, International 
Classiϐication of Diseases-9th revision (ICD-9) diagnoses, 
laboratory test results, medication histories, procedural 
details, ϐluid balance records, discharge summaries, vital 
sign measurements taken at the bedside, caregiver’s notes, 
radiology reports, and survival outcomes [11].

Selection of cases and controls

In the process of our study, we meticulously identiϐied 
two distinct groups: cases and controls. The cases consisted 
of individuals who developed liver cancer within a 1-year 
follow-up period after being diagnosed as overweight or 
obese. To ensure the robustness of our case selection, we 
required that these individuals had a minimum of two 
subsequent hospital visits following their diagnosis of 
overweight or obesity. To address the temporal variability in 
patient visits, we strategically selected the second (2nd) visit, 
denoted as the index date, for each patient. This selection was 
made since patients’ initial visit could fall at varying times. 
Consequently, our case group comprised 132 individuals, all 
of whom were diagnosed with liver cancer within one year of 
the sampled visit, Figure 1. 

Conversely, the control group included 2,222 individuals 
who did not have liver cancer during the 1-year follow-up 
period. The rationale behind creating these two distinct 
groups was to facilitate the assessment of a clinically relevant 
measure. Speciϐically, we aimed to provide physicians with 
the ability to estimate the likelihood of an overweight or 
obese patient developing liver cancer within one year from 
the time of their clinic visit. This estimation was based on the 
comprehensive array of features available at the time of the 
hospital visit, ensuring a thorough evaluation of the predictive 
factors associated with liver cancer in this population.

Handling missing values in clinical data

In our analysis, it is imperative to address the issue 
of missing values within the clinical dataset, a common 
challenge encountered in such datasets. Missing values, 
as the term implies, refer to situations where speciϐic data 
attributes are absent or unrecorded for certain observations 
[12].  To mitigate the impact of missing values on the integrity 
of our analysis, we employed an imputation method [13] in R 
programming software. Imputation is a statistical technique 
that allows us to estimate and ϐill in missing values, enabling 
a more comprehensive and reliable analysis of the dataset.

Imputation serves as a crucial step in data preprocessing, 
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ensuring that the statistical models we utilize have complete 
and informative data to work with. By imputing missing 
values, we reduce the potential bias and improve the overall 
robustness of our ϐindings. This process involves replacing 
missing values with estimated values based on the available 
information and the characteristics of the dataset. 

Feature extraction and selection

In this study, we employed a meticulous approach to the 
extraction and selection of predictive features for our liver 
cancer risk prediction model. The selection process was 
informed by a comprehensive literature review and enriched 
through discussions with a senior physician who possesses 
specialized expertise in clinical care research related to 
obesity and liver cancer. Our selection of predictive features 
encompassed a wide array of data sources, including 
laboratory results, demographic information, and various 
clinical parameters. This holistic approach aimed to ensure 
that our model would consider a comprehensive set of factors 
potentially associated with liver cancer risk.

For the feature selection process, we employed a stepwise 
logistic regression model [14], a statistical technique known 
for its ability to automatically determine the most relevant 
predictors for the model. Within the stepwise regression 
framework, we further applied both forward selection and 
backward elimination techniques. These methods collectively 
allow for the identiϐication of the most informative features 
for our liver cancer risk prediction model, ensuring that we 
consider a balanced perspective in selecting features.

To gauge the suitability of features for inclusion in our 
model, we used the Akaike information criterion (AIC) [15] 
as a feature selection criterion. The AIC is a widely accepted 
statistical measure that balances the trade-off between 
model complexity and goodness of ϐit. By utilizing the AIC, 
we ensured that the selected features would contribute 
signiϐicantly to the predictive accuracy of our model while 
avoiding unnecessary complexity. This rigorous feature 
extraction and selection process not only enhances the 
robustness of our liver cancer risk prediction model but also 

ensures that our approach aligns with established statistical 
methodologies and clinical expertise in the ϐield.

Model Development and Feature Selection:

In the course of this study, we embarked on the 
development and subsequent validation of a machine 
learning model known as XGBoost [16], with the primary 
goal of creating a robust one-year prediction model for liver 
cancer risk. This predictive model was meticulously tailored 
to the unique population of overweight and obese patients. 
Furthermore, our investigation entailed a comparative 
evaluation of the predictive performance of XGBoost against 
two other established models, Random Forest (RF) [17, 18] 
and Logistic Regression (LR) [19] Figure 2.

The process of model development was underpinned 
by a thoughtful selection of relevant features that would 
contribute to the predictive accuracy and clinical utility of our 
models. These features, serve as the foundational elements of 
our predictive models.

Our commitment to feature selection was not only aimed 
at optimizing model performance but also at elucidating 
the critical factors contributing to the risk of liver cancer 
among overweight and obese individuals. In doing so, we 
intended to provide a deeper understanding of the key 
determinants of liver cancer incidence within this speciϐic 
cohort. This comprehensive approach to feature selection 
and model development reϐlects our dedication to not only 
building predictive tools but also advancing the knowledge 
base surrounding liver cancer risk in this high-risk patient 
demographic.

Extreme gradient boosting (XGBoost)

The Extreme Gradient Boosting (XGBoost) model, 
initially introduced by reference [16], represents a notable 
advancement in the realm of machine learning. XGBoost 
has demonstrated remarkable capabilities in improving 
performance and enhancing the speed of gradient-boosted 
decision trees. This algorithm employs a unique training 
process that leverages diverse datasets to amalgamate weak 
predictors into potent predictive models. A distinctive feature 
of XGBoost is its sequential modeling approach, where each 

Figure 1: Timeline of study period schema.
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aim is to predict binary outcome classes, such as determining 
the presence or absence of a speciϐic medical condition or 
ascertaining the validity of a particular proposition (true or 
false). Its resurgence in healthcare research [27] signiϐies 
its enduring relevance and adaptability in addressing 
contemporary research questions and healthcare challenges.

Addressing sampling and class imbalance

In the realm of machine learning model evaluation, 
accuracy is a widely used metric for assessing predictive 
performance. However, its utility diminishes when dealing 
with imbalanced datasets, as is the case in our study. Here, we 
encounter a substantial variance between patients who have 
been diagnosed with liver cancer and those who have not, 
particularly among the population of obese and overweight 
individuals. In this context, our prediction task necessitates 
a high rate of accurate identiϐication of liver cancer cases 
within this speciϐic demographic.

Class imbalance issues are typically managed through 
one of several strategies, such as oversampling the minority 
class, undersampling the majority class [28], or employing 
a hybrid approach that combines both techniques [29]. It 
is worth noting that each of these strategies carries its own 
set of challenges. Undersampling, for instance, may lead to 
the removal of critical patterns, resulting in the loss of vital 
information. Conversely, oversampling may inadvertently 
introduce overϐitting and increase computational demands.

To mitigate these challenges, our study leverages the 
Synthetic Minority Over-sampling Technique (SMOTE) [30], 
which was originally introduced by Chawla and his colleagues. 
The SMOTE method stands out as an innovative approach, as 
it creates synthetic examples instead of merely replicating 

decision tree depends on the outcomes of the preceding one, 
resulting in the construction of a highly robust predictor 
[20]. The ϐinal model, as computed by the XGBoost algorithm, 
comprises an ensemble of several decision trees. XGBoost 
consistently demonstrates its ability to outperform single 
decision tree models. However, the degree to which XGBoost 
surpasses other machine learning models, such as Support 
Vector Machines (SVM) [21] and Gradient Boosting Decision 
Trees [22]. has been empirically substantiated [23].

Random Forest (RF)

Random Forest [18], a widely employed machine learning 
algorithm, serves as a versatile tool for classiϐication and 
regression tasks. Recognized for its ability to model intricate 
interactions among exploratory variables, this algorithm 
forms an ensemble of tree-like models [18,24]. One of its 
key strengths lies in its capacity to swiftly and effectively 
handle noisy data, making it particularly valuable in real-
world applications. Random Forest excels in uncovering non-
linear relationships within datasets and exhibits robustness 
in accommodating both continuous and discrete data types 
[25]. Moreover, it provides valuable insights into the 
presence of outliers within the data and identiϐies the most 
inϐluential features in the predictive model.

Logistic Regression (LR) 

Logistic Regression (LR) analysis, while tracing its origins 
back to the early nineteenth century, has experienced a 
resurgence in healthcare research over the past two decades 
[26]. It has emerged as a pivotal statistical tool, especially 
when the objective is to predict a binary (dichotomous) 
outcome based on one or more independent variables. LR 
ϐinds prominent application in scenarios where the primary 

Figure 2: Overview of predictive model development.
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(TP) and true negatives (TN) to the total instances under 
consideration.

iii. Sensitivity/Recall

Sensitivity, often referred to as recall, assesses the model’s 
ability to correctly identify positive instances. It is calculated 
as the ratio of true positives (TP) to the sum of true positives 
and false negatives (FN).

iv. Speci icity:

Speciϐicity evaluates the model’s aptitude for correctly 
recognizing negative instances. It is determined by the ratio 
of true negatives (TN) to the sum of true negatives and false 
positives (FP).

v. F-score

The F-score, which considers both precision and recall, 
offers a balanced assessment of the model’s performance. 
It is calculated as the harmonic mean of precision and recall 
and is expressed as (2 × Precision × Recall) / (Precision + 
Recall).

Where:

- TP: True Positives

- TN: True Negatives

- FN: False Negatives

- FP: False Positives

Statistical analysis

In this section, we describe the statistical analysis 
employed to scrutinize the demographic and clinical 
characteristics of patients within the liver cancer and non-
liver cancer groups. The aim was to discern meaningful 
distinctions between these two cohorts. The student t-test 
was utilized for comparing continuous variables, which 
included demographic and clinical attributes. Additionally, 
the Chi-square test or Fisher’s exact test was applied 
to gauge disparities between categorical variables. The 
chosen threshold for statistical signiϐicance throughout the 
analyses was set at p < 0.05. This level was deemed crucial 
in determining the statistical validity of observed differences 
between groups.

Data preprocessing and software utilized

All data preprocessing tasks, including data cleaning were 
executed using R software, speciϐically R version 4.3.0 (2023-
04-21). R is renowned for its capabilities in data manipulation 
and statistical analysis.

For the development of the machine learning models 
employed in this study, Python version 3.9 was the chosen 
programming language, implemented within the Jupyter 

existing ones. This technique effectively counteracts the 
issues associated with traditional oversampling, preventing 
overϐitting, and preserving the integrity of the dataset by 
generating new, synthetic instances that closely resemble the 
minority class. By implementing SMOTE, we aim to enhance 
the predictive performance of our model in the face of class 
imbalance, ultimately improving the accuracy of liver cancer 
detection among obese and overweight patients.

Model evaluation and validation

In this section, we elaborate on the methodologies 
employed for evaluating and validating our prediction 
models, highlighting key performance metrics that aid 
in assessing their effectiveness. Our evaluation process 
incorporated both the hold-out method [31] and the 10-
fold cross-validation method to ensure robust and reliable 
results.

Hold-out method

Initially, the dataset was bifurcated into two distinct 
subsets: a training set and a test set. The training set played 
a pivotal role in facilitating the classiϐier’s training process, 
allowing the model to learn from the data. Subsequently, 
the test set was utilized to gauge the prediction error rate 
after the model’s training was complete. Notably, the training 
set also played an essential role in generating prediction 
models, which were subjected to a subsequent 10-fold cross-
validation [32] step to further enhance model robustness.

10-fold cross-validation

To reinforce the credibility of our model’s performance, 
a 10-fold cross-validation approach was implemented. This 
technique divided the dataset into ten equal partitions, 
iteratively employing nine of these partitions for training 
and the remaining one for testing. This process was repeated 
ten times, ensuring that each partition served as a test set 
at least once. The results from these iterations were then 
aggregated, providing a comprehensive evaluation of model 
performance.

Evaluation metrics

To comprehensively assess the performance of our model, 
the following metrics were employed:

i. AUROC (Area Under Receiver Operating 
Characteristics):

The AUROC is a crucial metric that quantiϐies the model’s 
ability to discriminate between cases and control instances. 
It provides a comprehensive overview of the model’s 
predictive power.

ii. Accuracy

Accuracy measures the overall correctness of the model’s 
predictions and is computed as the ratio of true positives 
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Notebook environment. Python’s versatility and rich 
ecosystem of machine learning libraries made it an ideal 
choice for building, training, and evaluating the predictive 
models that played a pivotal role in this research. The 
adoption of these modern analytical tools allowed for a 
comprehensive and robust exploration of the relationships 
and predictive factors associated with liver cancer in the 
context of obesity and overweight.

Results
Baseline characteristics

The study included a cohort of 2,345 patients with 
overweight or obese. Within this population, 132 developed 
liver cancer. Among these, 79 (60%) were male, while 53 
(40%) were female. The median age of these liver cancer 
patients was 58 years, with the age range spanning from 33 
to 84 years.

For the 2,222 individuals who were not diagnosed with 
liver cancer during the study, a breakdown of the data 
revealed that 1,089 (49%) were male, and 1133 (51%) were 
female. The median age within this group was 60 years, with 
an age range extending from 16 to 88 years, Table 1.

Hyperparameters tuning and model confi guration

Hyperparameters are crucial components in machine 
learning [33], representing parameters that can be manually 
set or conϐigured before initiating the model training process. 
These hyperparameters retain their predetermined values 
or settings throughout the training process. In our study, we 
conducted hyperparameter tuning for each of the machine 
learning algorithms while retaining default values for the 
remaining parameters.

For the XGBoost model, we adjusted the following 
hyperparameters: learning rate set to 0.3, the learning rate 
controls the step size during gradient descent, inϐluencing 
the convergence speed and model performance. max 
depth limited to 5, the max depth constrains the depth of 
the decision trees within the ensemble, thus preventing 
overϐitting. For alpha, we assigned a value of 10, alpha 
determines the L1 regularization term strength, inϐluencing 
the model’s ability to handle multicollinearity. n Estimators 
ϐixed at 100, this parameter dictates the number of trees in 
the XGBoost ensemble, impacting model robustness.

In the case of the logistic regression model, we utilized 
a penalty parameter of 12, which regulates the type of 
regularization applied. Higher penalty values emphasize 
stronger regularization. C (Inverse of Regularization 
Strength set to 100.0, the C parameter controls the inverse 
of regularization strength, with higher values reducing the 
impact of regularization. Tolerance (Tol) is established at 
0.000001, and the tolerance value inϐluences the convergence 
criterion, specifying the required change in the cost function. 
Maximum Iterations (Max Iter) are limited to 1000, this 
parameter governs the maximum number of iterations 
performed during optimization.

For the random forest model, mtry (Number of Features 
to Consider for the Best Split) is speciϐied as 4, and mtry 
determines the number of features considered when 
searching for the best split at each node. n estimators set at 
100, this parameter controls the number of decision trees in 
the random forest ensemble, affecting model stability. min 
sample split ϐixed at 20, the min sample split designates the 
minimum number of samples required to split an internal 
node. min samples leaf established as 2, the min samples leaf 

Table 1: Baseline characteristics.
Variables Liver cancer  (n = 132) non-Liver cancer (n = 2,222) p value

Demographics  
Age (yrs.), median (min-max) 58 (33 – 84) 60 (16 – 88) 0.010*

Gender (Male) n (%) 79 (60) 1,089 (49) 0.056* 
Cardiac Enzymes

Platelet count (K/uL) 122 (84.9 – 190.7) 234 (181.2 – 299.2) <0.00*
Liver function markers

Albumin (g/dL) 3 (2.69 – 3.35) 3.2 (3.1 – 3.4) <0.00*
TBIL (mg/dL) 1.95 (0.91 – 3.97) 0.55 (0.43 – 0.60) <0.00*

Creatinine (mg/dL) 1.21 (0.86 – 2.02) 0.96 (0.74 – 1.36) 0.439
ALP (IU/L) 95.2 (73.7 – 149.7) 80 (70 – 89.3) 0.685
ALT (IU/L) 28.29 (20.6 – 56.4) 26.0 (21.0 – 32.0) 0.041*
AST (IU/L) 52.1 (32.7 – 107) 31.4 (25.0 36.3) 0.182

PT (s) 16 (15 – 20.5) 14 (13.1 – 15.5) 0.001*
Electrolyte levels
Potassium (mEq/L) 4.0 (3.76 – 4.31) 4.12 (3.9 – 4.36) 0.001*

Calcium (mg/dL) 8.44 (8.07 – 8.87) 8.53 (8.2 – 8.86) 0.186
Chloride (mEq/L) 103 (103.3 – 106.5) 103 (100.6 – 105.5) 0.010*
Sodium (mEq/L) 137 (135.5 – 140.1) 138 (137 – 140.6) <0.00*

TBIL: Total Bilirubin; AST: Aspartate Aminotransferase; ALP: Alkaline Phosphate; PT: Prothrombin Time; ALT: Alanine Aminotransferase; Mg/Dl: Milligrams Per Deciliter; IU/L :
International Units Per Liter; Yrs: Years; K/Ul: Thousand Per Microliter, %: Percentage; Meq/L: Milliequivalents Per Liter. Continuous Values Were Recorded as Median (1–3rd 
Quantile), and Categorical Values (Absolute Numbers and Percentages). The Chi-Square test was used for the Comparison of Categorical Variables and the Two-Sample 
T-Test for Continuous Variables. All p values were Two-Sided. Statistical Signifi cance was Defi ned as p < 0.05.
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determines the minimum number of samples necessary for 
a node to be considered a leaf. The Random State assigned a 
value of 41, the random state ensures the reproducibility of 
results when randomness is involved in the algorithm.

Machine learning models performance 

To gauge the performance of our machine learning 
model, we utilized a variety of model evaluation metrics. A 
comparative analysis between the XGBoost model and two 
other models, namely Random Forest (RF) and Logistic 
Regression (LR), is presented in Table 2.

The XGBoost model demonstrated a robust performance 
with an accuracy of 96%, showcasing its reliability on 
unseen data. Notably, the model achieved a sensitivity of 
94%, effectively identifying individuals at risk of liver cancer. 
Furthermore, the model exhibited a high speciϐicity rate of 
97%. The impressive AUC score of 99% highlights its excellent 
ability to discriminate between positive and negative cases. 
Additionally, the model achieved a commendable F1 score of 
96%, reϐlecting a well-balanced predictive performance that 
combines precision and recall.

The RF model demonstrated an accuracy of 95%, a 
sensitivity rate of 95%, and a speciϐicity rate of 96%. 
The model F1 score of 95%, illustrates a well-balanced 
performance in terms of precision and recall.

The LR model achieved an accuracy of 81%, and a 
sensitivity of 87%, implying its capability to correctly identify 
a portion of individuals at risk. With a speciϐicity rate of 77%, 
the LR model correctly classiϐies some individuals who are 
not at risk of liver cancer. The F1 score was 82%.

Receiver Operating Characteristic (ROC) curves for 
the Models

The Receiver Operating Characteristic (ROC) curve 
analysis provides crucial insights into the performance of our 
models in distinguishing between liver cancer and non-liver 
cancer cases. The AUROC is a vital metric that quantiϐies this 
discrimination capability Figure 3.

For our study, the results of the ROC analysis demon-
strated the following AUROC values for the different models: 
the XGBoost model exhibited an exceptional AUROC of 99%, 
the Random Forest model achieved a commendable AUROC 
of 99%, and the Logistic Regression model yielded an AUROC 

of 90%. These AUROC values are indicative of the models’ 
proϐiciency in distinguishing between liver cancer and non-
liver cancer cases.

Evaluation of feature importance

Understanding the relevance and signiϐicance of 
individual features is crucial to gauge their impact on the 
predictive performance of our models. We employed variable 
importance plots to elucidate the order of importance of 
these features in our analysis. 

For our XGBoost model, Figure 4, we determined feature 
importance using the “f-score.” The f-score represents the 
number of times a speciϐic feature is employed to partition 
the data across all decision trees within the model. A higher 
f-score indicates that a particular feature plays a more 
prominent role in the model’s predictive accuracy, making it 
a valuable predictor of liver cancer risk.

Multivariate analysis revealing factors infl uencing 
liver cancer risk

A comprehensive multivariate analysis, conducted 
through logistic regression, brought to light the substantial 
impact of various factors on the risk of liver cancer (as 
summarized in Table 3). The results shed light on the 
associations between key parameters and the likelihood of 
developing liver cancer, highlighting the inϐluence of these 
variables when altered by one unit.

These ϐindings offer valuable insights into the complex 
interplay of factors that contribute to liver cancer risk, aiding 
in the development of more precise risk assessment models 
and targeted preventive strategies.

Discussion
The development and validation of a one-year liver cancer 

risk prediction system targeted at overweight and obese 

Table 2: Model performance.

Models Accuracy 
(%)

Sensitivity 
(%)

Specifi city 
(%)

AUROC 
(%)

F1 Score 
(%)

XGBoost 0.96 0.94 0.97 0.99 0.96
RF 0.95 0.95 0.96 0.99 0.94
LR 0.81 0.87 0.77 0.90 0.82

Xgboost: Extreme Gradient Boosting; RF: Random Forest; LR: Logistic Regression; 
AUROC: Area Under The Receiver Operating Characteristic.

Table 3: Multivariate analysis of factors for Liver Cancer.
features adjusted Odd Ratio  95% confi dence interval  p - value

Age 1.01 0.96 – 1.03 0.011*
Gender 1.41 0.93 – 1.56 0.037*

Platelet count (K/uL) 0.99 0.99 – 0.99 <0.00*
Albumin (g/dL) 0.41 0.26 – 0.65 <0.00*
TBIL (mg/dL) 1.18 1.10 – 1.27 <0.00*

Creatinine (mg/dL) 1.07 0.90 – 1.27 0.451
ALP (IU/L) 1.04 0.99 – 1.08 0.692
ALT (IU/L) 1.01 0.99 – 1.02 0.041*
AST (IU/L) 0.99 0.99 – 1.00 0.066

PT (s) 1.06 1.02 – 1.10 0.004*
Potassium (mEq/L) 0.47 0.26 – 0.83 0.008*

Calcium (mg/dL) 1.28 0.89 – 1.84 0.212
Chloride (mEq/L) 1.08 1.01 – 1.15 0.027*
Sodium (mEq/L) 0.86 0.79 – 0.93 <0.00*

TBIL: Total Bilirubin; AST: Aspartate Aminotransferase; ALP: Alkaline Phosphate; 
PT: Prothrombin Time; ALT: Alanine Aminotransferase; Mg/Dl: Milligrams Per 
Deciliter; IU/L: International Units Per Liter; K/Ul: Thousand Per Microliter; Meq/L: 
Milliequivalents Per Liter
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patients represent a signiϐicant advancement in personalized 
healthcare. The implementation of an extreme gradient 
boosting (XGBoost) machine learning model demonstrated 
promising predictive performance, showcasing its potential 
as an effective tool for risk assessment in this speciϐic 
population.

Our study aimed to not only construct a robust 
prediction model but also to compare its performance 
against established methods such as random forest and 
logistic regression. The XGBoost model exhibited superior 

predictive accuracy, highlighting its suitability for discerning 
nuanced patterns in the data, especially in the context of 
liver cancer risk among overweight and obese individuals. 
Such success can be attributed to the ensemble nature of 
XGBoost, enabling it to capture intricate associations in the 
data without necessitating the speciϐication of high-order 
interactions or non-linear functions [20]. This ϐinding aligns 
with the growing recognition of the effectiveness of XGBoost 
in handling complex relationships within medical datasets 
[34, 35].

Figure 3: Receiver operator characteristic curves and precision-recall curve. (A) Receiver operating characteristic curve. (B) Precision-recall curve.

Figure 4: Feature importance contributed to the XGBoost model. TBil: Total Bilirubin; AST: Aspartate Aminotransferase; ALP: Alkaline Phosphate; PT: 
Prothrombin Time; ALT: Alanine Aminotransferase
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A multivariate analysis pinpointed several independent 
predictors closely associated with liver cancer. Notably, 
total bilirubin, creatinine levels, age, gender, ALT, alkaline 
phosphate (ALP), prothrombin time (PT), calcium, and 
chloride were strongly linked to liver cancer incidence, while 
platelet, albumin, AST, potassium, and sodium appeared as 
protective factors.

The marginal increase in liver cancer risk with age 
suggests that, in our study population of overweight and 
obese individuals, age plays a relatively subtle role. In a 
cohort of individuals diagnosed with liver cancer, the median 
age is 58 years. The association between age and liver 
cancer risk is well-established, with an elevated likelihood 
observed as individuals advance in age. This correlation may 
be attributed to the cumulative effect of exposure to risk 
factors over an extended period. Multiple studies, including 
investigations by [36-39] have consistently reported an 
increased risk of liver cancer within the age range of 58 to 
68, further substantiating the age-dependent pattern of liver 
cancer incidence documented in the literature.

Notably, the gender distribution within the subset of 
individuals diagnosed with liver cancer revealed a striking 
trend, with a signiϐicant majority (60%) being male. The 
observed gender disparity in liver cancer incidence within 
the overweight and obese population is a noteworthy ϐinding. 
This aligns with existing literature that has often reported a 
higher prevalence of liver cancer among males [40-42]. The 
reasons behind this gender-speciϐic susceptibility warrant 
further exploration and may include hormonal, behavioral, 
or genetic factors that contribute differentially to liver cancer 
risk. The relatively low overall incidence of liver cancer 
within the one-year follow-up period emphasizes the need 
for targeted risk assessment in populations characterized 
by overweight or obesity. While the overall percentage is 
relatively small, the signiϐicance lies in the identiϐication 
of individuals at heightened risk within this speciϐic 
demographic. Understanding the factors contributing to 
liver cancer development in this context is essential for 
implementing preventive measures and personalized 
healthcare strategies.

The positive odds ratio for total bilirubin (TBIL) indicates 
that higher levels are associated with an increased risk of 
liver cancer. Elevated levels of Total Bilirubin (TBIL) serve as 
an indicative marker of liver dysfunction [43], underscoring 
the critical role of maintaining optimal liver health in the 
broader context of cancer prevention. The liver plays a 
central role in metabolizing bilirubin, and deviations from 
normal TBIL levels may signify disruptions in liver function 
[44].

The observed positive odds ratio for Prothrombin Time 
(PT) implies a modest yet noteworthy association with an 
elevated risk of liver cancer. PT, a measure of blood clotting, 

is sensitive to liver function, and alterations in PT levels may 
serve as an indicator of liver dysfunction [45]. This ϐinding 
underscores the signiϐicance of PT as a potential predictive 
biomarker for liver cancer. Monitoring PT and recognizing 
its association with liver cancer risk can provide valuable 
insights for early detection and intervention, enhancing 
the effectiveness of preventive measures and therapeutic 
strategies in individuals at risk of liver cancer.

The odds ratio approximating 1 for Aspartate 
Aminotransferase (AST) suggests a relatively neutral 
association with liver cancer risk in the context of overweight 
and obese individuals. This ϐinding implies that, within 
this speciϐic population, variations in AST levels may not 
signiϐicantly contribute to an increased or decreased risk of 
liver cancer. While AST is an enzyme associated with liver 
function [46], its close-to-neutral odds ratio in this context 
indicates that, among overweight and obese individuals, AST 
may not be a predominant factor inϐluencing liver cancer 
risk, highlighting the importance of considering multiple 
biomarkers for a comprehensive risk assessment.

The markedly low odds ratio in the multivariate analysis 
for albumin suggests a robust inverse relationship between 
albumin levels and the risk of liver cancer. Elevated albumin 
levels appear to be associated with a protective effect, 
emphasizing the critical role of maintaining optimal liver 
function and overall health. Albumin, a protein produced 
by the liver, plays a key role in various physiological 
processes [22], and its inverse association with liver cancer 
risk underscores the potential of albumin as a biomarker 
indicative of liver health. This ϐinding highlights the 
importance of interventions and lifestyle factors that support 
and preserve optimal liver function for overall well-being 
and potential cancer prevention.

Biochemical markers, including calcium and chloride, 
serve as indicators of liver cancer risk in overweight and 
obese individuals. The heightened odds for calcium imply a 
favorable correlation with the risk of liver cancer, signifying 
that disruptions in calcium homeostasis may be indicative 
of underlying physiological changes contributing to cancer 
development [47]. Similarly, the marginally increased odd 
for chloride suggests a nuanced positive association with 
liver cancer risk. The nearly neutral odds ratio for alanine 
aminotransferase (ALT) within the scope of this study 
indicates that ALT levels exhibit minimal inϐluence on the 
risk of liver cancer. This observation highlights the intricate 
nature of liver enzyme dynamics in the context of assessing 
cancer risk. The nuanced relationship between ALT and 
liver cancer risk in this study underscores the multifactorial 
nature of liver health, emphasizing that the interplay of 
various factors contributes to the overall complexity of 
understanding the role of speciϐic enzymes in the context of 
cancer risk assessment. 
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Feature importance was assessed using an f-score derived 
from the XGBoost model. These scores reϐlect the frequency 
with which a feature is used to split the data across all trees. 
In the XGBoost model, the top 5 most important features 
included total bilirubin, platelet, gender, ALP, and AST.  These 
assessments offer insights into which speciϐic variables carry 
the most weight in predicting liver cancer risk within the 
context of our study. Understanding the relative importance 
of these features can aid in reϐining the predictive model and 
identifying the key factors that should be closely monitored 
for individuals at risk of developing liver cancer. Secondly, 
identifying inϐluential predictive features is crucial as it 
offers valuable insights into the factors driving liver cancer 
incidence among overweight and obese patients. Such 
insights can inform targeted interventions and personalized 
healthcare strategies, potentially leading to more effective 
preventive measures and early interventions.

Integrating AI in clinical pathology: Enhancing liver 
cancer prediction in overweight and obese individuals

Artiϐicial Intelligence (AI) has emerged as a transformative 
force in various domains, and its applications in healthcare, 
speciϐically in clinical pathology, have garnered signiϐicant 
attention. The integration of AI, particularly machine 
learning models, into clinical practice holds great promise 
for enhancing diagnostic accuracy, prognostication, and 
personalized treatment strategies.

AI-powered machine learning models have demonstrated 
exceptional capabilities in analyzing complex datasets, 
leading to improved diagnostic accuracy. In clinical 
pathology, this translates to more precise identiϐication of 
biomarkers and patterns associated with various diseases, 
including liver cancer.

One of the key strengths of AI in clinical pathology 
is its ability to predict disease outcomes before clinical 
manifestation. The use of predictive models, as exempliϐied 
in our study, enables the identiϐication of individuals at high 
risk of developing liver cancer, facilitating early intervention 
and preventive measures. The ML models can analyze diverse 
patient data, including genetic, clinical, and lifestyle factors, 
to tailor treatment strategies. This personalized approach 
is particularly relevant in the context of liver cancer, where 
risk factors vary, and individualized interventions can lead 
to better patient outcomes. The application of AI in clinical 
pathology, as exempliϐied by our study on predicting liver 
cancer risk, holds immense potential to revolutionize 
healthcare practices. 

Strength and limitations

Firstly, the XGBoost model demonstrated superior 
predictive accuracy, achieving an impressive area under the 
receiver operating characteristic curve (AUROC) of 99%. 
This exceptional performance indicates the model’s efϐicacy 

in discriminating between individuals at high and low risk of 
developing liver cancer within the studied population. The 
robust predictive capabilities of XGBoost enhance its potential 
as a valuable tool for early risk identiϐication. Secondly, 
the utilization of prospective and consistently collected 
data is a notable strength. By leveraging high-quality data 
obtained over time, our study captures a comprehensive and 
reliable representation of the patient cohort. This enhances 
the generalizability of our ϐindings to similar populations, 
reinforcing the external validity of the predictive model. 
Lastly, the successful mitigation of missing values is a critical 
strength. Addressing missing data ensures the completeness 
and integrity of the dataset, preventing potential biases and 
inaccuracies in the model training process. The meticulous 
handling of missing values contributes to the overall 
robustness of our predictive model, enhancing its reliability 
in real-world clinical scenarios.

Nonetheless, we must acknowledge several limitations. 
Firstly, as with any retrospective study, the potential for 
coding errors is an inherent limitation. Despite rigorous 
data quality control measures, the reliance on historical 
records introduces the possibility of inaccuracies in the 
documentation of variables. This highlights the importance of 
cautious interpretation and emphasizes the need for external 
validation to ensure the reliability of our ϐindings. External 
validation, particularly through prospective multicenter 
studies, is an essential step forward. While our study 
provides valuable insights within the context of the MIMIC 
III database, assessing the generalizability of our predictive 
model to diverse populations and healthcare settings is 
crucial. Prospective studies can provide a more robust 
evaluation of the model’s performance in real-world clinical 
scenarios. Additionally, the relatively short follow-up period 
in our study is acknowledged as a limitation. Extending the 
duration of follow-up and incorporating larger cohorts would 
enhance the ability to validate and generalize our ϐindings. A 
longer observation period would capture a more extensive 
range of outcomes and strengthen the model’s predictive 
capabilities over an extended timeframe.

Conclusion
In this study, we’ve showcased the efϐicacy of machine 

learning, particularly XGBoost, in accurately predicting liver 
cancer development in overweight and obese individuals. 
The identiϐied features are easily accessible to clinicians, 
allowing seamless integration into electronic health records 
for real-time risk assessment. With the modiϐiable nature of 
obesity-related risk factors, our model holds potential for 
use in diet and exercise programs to monitor changes in liver 
cancer risk over time.

Ethics approval

Before embarking on our research endeavors, it was 
incumbent upon us to diligently adhere to established ethical 
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standards and procedures. This involved the successful 
completion of mandatory online human research ethics 
training, as outlined and mandated by PhysioNet Clinical 
Databases with Certiϐication Number: 55140935. 

In alignment with the rigorous standards of data access 
and handling, we followed prescribed protocols meticulously. 
Access to sensitive medical data was granted in strict 
adherence to established guidelines and safeguards, ensuring 
that all pertinent ethical considerations were upheld. Our 
commitment to ethical research was further underscored 
by our unwavering adherence to the principles set forth 
in the Declaration of Helsinki [48], which is a fundamental 
framework for conducting medical research involving human 
subjects. This comprehensive ethical framework ensures 
that the dignity, rights, safety, and well-being of research 
participants are paramount and explicitly safeguarded. 

Study highlights

This research pioneers an advanced machine learning 
framework, employing XGBoost, to predict the one-year 
risk of liver cancer speciϐically in overweight and obese 
individuals. Outperforming Random Forest and Logistic 
Regression models, XGBoost exhibits an impressive 99% 
AUROC. Notably, identiϐied predictors, including age, gender, 
and biochemical markers, provide readily available insights 
for real-time risk assessment. The modiϐiable nature of 
obesity as a risk factor positions the model as a potential tool 
for personalized interventions, heralding a transformative 
approach to liver cancer prevention. While promising, 
external validation and considerations for lifestyle factors 
warrant further exploration.
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