Amyotropyc Lateral Sclerosis and Endogenous -Esogenous Toxicological Movens: New model to verify other Pharmacological Strategies

Main Article Content

Mauro Luisetto
Behzad Nili-Ahmadabadi
Nilesh M Meghani
Ghulam Rasool Mashori
Ram Kumar Sahu
Kausar Rehman Khan
Ahmed Yesvi Rafa
Luca Cabianca
Gamal Abdul Hamid
Farhan Ahmad Khan

Abstract

In 1874 J.M. Charcot was the first to describe ALS amyotrophic lateral sclerosis, a disease with an high non response therapy rate also to the actual therapy.


ALS is not clearly associate to only single etio-patogenetic movens but many process seem involved.


Also the strange geographic diffusion of different forms contribute to a complex syndromic pathology.


The introducing of new theories and approach can help to find more efficacy therapeutic strategies.


In this work the different neuronal damage movens and new therapeutic strategies are analyzed to produce a Unic global response to the pathologic process useful in next clinical application.


Genetic factors must be considered also added to environmental movens but also to the endogenous microenvironment of motoneuron involved.


A toxicological-biochemical-imunological approach can be useful tool to find new therapeutic strategies.


Or to improve local availability of pharmacological molecules.

Article Details

Luisetto, M., Nili-Ahmadabadi, B., Meghani, N. M., Mashori, G. R., Sahu, R. K., Khan, K. R., … Khan, F. A. (2018). Amyotropyc Lateral Sclerosis and Endogenous -Esogenous Toxicological Movens: New model to verify other Pharmacological Strategies. Archives of Pathology and Clinical Research, 2(1), 029–048. https://doi.org/10.29328/journal.apcr.1001009
Research Articles

Copyright (c) 2018 Luisetto M, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Lyon M, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C. Inflammation, Immunity and ALS: Etiology and Pathology. Muscle Nerve. 2018; Ref.: https://goo.gl/WE79i4

Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med Genet. 2018; 30: 252-258. Ref.: https://goo.gl/nkpX3J

Di Pietro L, Lattanzi W, Bernardini C. Skeletal Muscle MicroRNAs as Key Players in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2018; 19. pii: E1534. Ref.: https://goo.gl/D8iWAf

Baskaran P, Shaw C, Guthrie S. TDP-43 Causes neurotoxicity and cytoskeletal dysfunction in primary cortical neurons. PLoS One. 2018; 13: e0196528. Ref.: https://goo.gl/KTHGCu

Deng B, Lv W, Duan W, Liu Y, Li Z, et al. Progressive Degeneration and Inhibition of Peripheral Nerve Regeneration in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis. Cell Physiol Biochem. 2018; 46: 2358-2372. Ref.: https://goo.gl/eiLgXN

Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett. 2018; pii: S0304-3940(18)30261-1. Ref.: https://goo.gl/jrRgyG

Mammana S, Fagone P, Cavalli E, Basile MS, Petralia MC, et al. The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci. 2018;19: pii: E831. Ref.: https://goo.gl/8NgdcH

Shin JH, Lee YA, Lee JK, Lee YB, Cho W, et al. Concurrent blockade of free radical and microsomal prostaglandin E synthase-1-mediated PGE2 production improves safety and efficacy in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2012; 122: 952-561. Ref.: https://goo.gl/piQZ6a

Okumura H. Epidemiological and clinical patterns of western pacific amyotrophic lateral sclerosis (ALS) in Guam and sporadic ALS in Rochester, Minnesota, U.S.A. and Hokkaido, Japan: a comparative study. Hokkaido Igaku Zasshi. 2003; 78: 187-195. Ref.: https://goo.gl/SqCzwP

Takeda T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology. 2018; 38: 72-81. Ref.: https://goo.gl/yCH5f6

Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, et al. SOD1 in Amyotrophic Lateral Sclerosis: "Ambivalent" Behavior Connected to the Disease. Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan. Int J Mol Sci. 2018; 19. pii: E1345. Ref.: https://goo.gl/PJSLCz

Oeckl P, Weydt P, Steinacker P, Anderl-Straub S, Nordin F, et al. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry. 2018; pii: jnnp-2018-318868. Ref.: https://goo.gl/ny5pT4

Patai R, Nógrádi B, Meszlényi V, Obál I, Engelhardt J, et al. [Calcium ion is a common denominator in the pathophysiological processes of amyotrophic lateral sclerosis]. Ideggyogy Sz. 2017; 70: 247-257. Ref.: https://goo.gl/2A5B1P

Manabe Y, Kashihara K, Shiro Y, Shohmori T, Abe K. Enhanced Fos expression in rat lumbar spinal cord cultured with cerebrospinal fluid from patients with amyotrophic lateral sclerosis.Neurol Res. 1999; 21: 309-312. Ref.: https://goo.gl/UsqiAV

Luisetto M.Intra- Local Toxicology Aspect Time Related in Some Pathologic Conditions. Open Acc J of Toxicol. 2017; 2: 555586. Ref.: https://goo.gl/8j5M41

Luisetto M, Nili-Ahmadabadi B, Mashori GR, Yesvi A, Sahu RK. Brain and immune system: KURU disease a toxicological process? J Neurosci Neurol Disord. 2018; 2: 014-027. Ref.: https://goo.gl/zzeCN3

Case AJ. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel). 2017; 6. pii: E82. Ref.: https://goo.gl/rMYNLH

Nazıroğlu M, Muhamad S, Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert Rev Clin Pharmacol. 2017; 10: 773-782. Ref.: https://goo.gl/ipcBbm

Adebayo OL, Adenuga GA, Sandhir R. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sci. 2016; 152: 145-155. Ref.: https://goo.gl/MCs1mB

Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009; 73: 805-811. Ref.: https://goo.gl/r4mPbA

McGeer PL, Steele JC. The ALS/PDC syndrome of Guam: potential biomarkers for an enigmatic disorder. Prog Neurobiol. 2011; 95: 663-669. Ref.: https://goo.gl/hcVWp4

Muyderman H, ChenT. Mitochondrial dysfunction in amyotrophic lateral sclerosis – a valid pharmacological target? Br J Pharmacol. 2014; 171: 2191–2205. Ref.: https://goo.gl/GFmpqB

Zarei R, Carr K, Reiley L, Diaz K, Guerra O, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015; 6: 171. Ref.: https://goo.gl/qAk68k

Kasinathan N, Jagani HV, Alex AT, Volety SM, Rao JV. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 2015; 22: 243-257. Ref.: https://goo.gl/5SCGtQ

Sharma U, Badyal PN, Gupta S. Polymeric Nanoparticles Drug Delivery to Brain: A Review. Int J Pharmacol Pharm Sci. 2015 2: 5; 60-69. Ref.: https://goo.gl/Kdsjha

Küry P, Nath A, Créange A, Dolei A, Marche P. et al. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med. 2018; 24: 379-394. Ref.: https://goo.gl/Y4zq5F

Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008; 9(Suppl 3): S5. Ref.: https://goo.gl/snHWGK

Jia Liu, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front. Immunol. 2017; 8: 1005. Ref.: https://goo.gl/XLkSoQ